4) (изображение прикреплено) Известно, что две параллельные прямые пересечены третьей прямой. Если ∢5=115°,то ∢4 =
5)
Вычисли градусные меры углов, если смежные углы относятся как 1 : 29
(∢B больше∢A).
∢A= °;
∢B= °.
6) Нарисуй прямоугольник HEFG, сторона которого HE = 4 см и HG = 6 см. Найди расстояние: a) от вершины E до луча FG: см; b) от центра прямоугольника до луча HG: см; c) от стороны HE до точки пересечения диагоналей прямоугольника: см. 7) Две параллельные прямые пересекает третья прямая (a∥b, c пересекает a и b и не перпендикулярна им). Отметь утверждения, которые ложны. Накрест лежащие углы равны Односторонние углы равны Сумма односторонних углов равна 180 градусов Сумма накрест лежащих углов равна 180 градусов Сумма соответственных углов равна 180 градусов Соответственные углы равны 8) Дано: ∢4=106°,∢5=69°. Вычисли остальные углы. (изображение прикреплено) ∢1= °;∢2= °;∢3= °;∢4= °;∢5= °;∢6= °;∢7= °;∢8= °.
Центры окружностей касательных прямой m в точках А и В лежат на перпендикулярах к этой прямой проведенных в этих точках. Проведем окружности касающиеся друг друга в точке С и прямой в точках А и В. Центры этих окружностей лежат на пересечении перпендикуляров от А и В и серединных перпендикуляров АС и ВС. Проведем касательную прямую СО. Она пересекает прямую АВ в точке О. По свойству касательных, проведенных из одной точки ОА=ОС и ОС=ОВ. Значит ОА=ОВ и точка О середина АВ. ОС медиана треугольника АВС. Если медиана равна половине стороны к которой проведена, то угол этого треугольника прямой и треугольник - прямоугольный с гипотенузой равной диаметру окружности описанной вокруг него. Следовательно: множество искомых точек - вершины прямоугольных с общей треугольников гипотенузой АВ описанных окружностью с диаметром АВ.
(DB1)²=(BB1)²+BD² . ΔDBB1 - равнобедренный ,прямоугольный.,
∠BDB1 = ∠BB1D =45° . BD найдём из ΔABD BD = √AD²+AB² = √a²+a² =a·√2. BD= a·√2 BB1 = BD = a√2 ⇒ DB1= √2·(a·√2)² = a√2·√2=.2a
DB1=2 a
б)Угол между диагональю DB1 и боковой гранью - угол между прямой DB1 и её проекцией АВ1 на плоскость АВВ1А1, т.к ∠DA ⊥ АВ , АВ ⊆ пл.АВВ1А1. АВ ⊥ АВ1 ⇒ ΔDAB1 -прямоугольный ⇒
sin∠AB1D =AD / DB1 = a / (2 a )= 1/2 ⇒
∠AB1D = 30°
в ) Площадь указанного в условии сечения - площадь прямоугольника ADC1B1 : S = AD· AB1
Из ΔABB1 AB1 = √AB² + B1B² = √a² + (a√2)²=√3a² = a·√3
Проведем окружности касающиеся друг друга в точке С и прямой в точках А и В.
Центры этих окружностей лежат на пересечении перпендикуляров от А и В и серединных перпендикуляров АС и ВС.
Проведем касательную прямую СО. Она пересекает прямую АВ в точке О.
По свойству касательных, проведенных из одной точки ОА=ОС и ОС=ОВ. Значит ОА=ОВ и точка О середина АВ.
ОС медиана треугольника АВС.
Если медиана равна половине стороны к которой проведена, то угол этого треугольника прямой и треугольник - прямоугольный с гипотенузой равной диаметру окружности описанной вокруг него.
Следовательно: множество искомых точек - вершины прямоугольных с общей треугольников гипотенузой АВ описанных окружностью с диаметром АВ.