Аов бұрышының қабырғаларынан oc және od тең кесінділері алынған (8.9-сурет). осы бұрыштың биссектрисасынан алынған е нүктесі с және d нүктелерімен қосылған. ес = ed екенін дәлелдеңдер.
Подробно. • На произвольной прямой отмечаем точки М и Н. • Из этих точек, как из центров, проводим две полуокружности так, чтобы они пересеклись по обе стороны от прямой. Точки пересечения полуокружностей соединяем. •Точку пересечения с прямой обозначим О - это будет вершина нужного угла. Построен срединный перпендикуляр. Отметим на нем отрезок ОК, на прямой - равный ему ОВ и соединим их. Треугольник КОВ - равнобедренный прямоугольный. • Разделим отрезок КВ пополам таким же образом, как при построении срединного перпендикуляра отрезка НМ, и соединим точку пересечения перпендикуляра и т. О. ОС - высота равнобедренного ∆ КОВ, следовательно, и биссектриса прямого угла КОВ, и угол СОВ=90°:2=45°. • Из т.О, как из центра, построим окружность. • Поставим ножку циркуля в точку пересечения ОС и окружности и тем же радиусом сделаем на окружности насечку и отметим т.А. • АС=R, OA=OC=R, след. ∆ АОС = равносторонний и угол АОС=60°. Угол АОВ=60°+45°=105°. Угол нужной величины построен.
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то треугольники подобны.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ . Доказать: ΔАВС подобен ΔА₁В₁С₁. Доказательство: Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) . Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках: АВ₂ : А₁В₁ = АС : А₁С₁. Сравним полученную пропорцию с данной в условии: АВ : А₁В₁ = АС : А₁С₁ Значит, АВ₂ = АВ. Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию). Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит ΔАВС подобен ΔА₁В₁С₁. Доказано.
• На произвольной прямой отмечаем точки М и Н.
• Из этих точек, как из центров, проводим две полуокружности так, чтобы они пересеклись по обе стороны от прямой. Точки пересечения полуокружностей соединяем.
•Точку пересечения с прямой обозначим О - это будет вершина нужного угла. Построен срединный перпендикуляр. Отметим на нем отрезок ОК, на прямой - равный ему ОВ и соединим их. Треугольник КОВ - равнобедренный прямоугольный.
• Разделим отрезок КВ пополам таким же образом, как при построении срединного перпендикуляра отрезка НМ, и соединим точку пересечения перпендикуляра и т. О. ОС - высота равнобедренного ∆ КОВ, следовательно, и биссектриса прямого угла КОВ, и угол СОВ=90°:2=45°.
• Из т.О, как из центра, построим окружность. • Поставим ножку циркуля в точку пересечения ОС и окружности и тем же радиусом сделаем на окружности насечку и отметим т.А.
• АС=R, OA=OC=R, след. ∆ АОС = равносторонний и угол АОС=60°. Угол АОВ=60°+45°=105°. Угол нужной величины построен.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ .
Доказать: ΔАВС подобен ΔА₁В₁С₁.
Доказательство:
Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) .
Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках:
АВ₂ : А₁В₁ = АС : А₁С₁.
Сравним полученную пропорцию с данной в условии:
АВ : А₁В₁ = АС : А₁С₁
Значит, АВ₂ = АВ.
Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию).
Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит
ΔАВС подобен ΔА₁В₁С₁.
Доказано.