1) Если известны высота призмы и её диагонали (это катет и гипотенуза прямоугольного треугольника), то находим второй катет в треугольниках, составленных из Н = 2 см, D1 = 8 см D2 = 5 см.
Получаем диагонали ромба в основании призмы.
d1 = √(8² - 2²) = √(64 - 4) = √60 = 2√15 см.
d2 = √(5² - 2²) = √(25 - 4) = √21 см.
Зная диагонали основания, находим его сторону.
а = √((d1/2)² + (d2/2)²) = √(15 + (21/4)) = √(81/4) = 9/2 = 4,5 см.
2) Дано диагональное сечение куба с площадью, равной 49√2 см².
1) Сонаправленные (также колинеарные)
2) Противоположно направленные (также колинеарны)
3) Равные (также они соноправлены и колинеарны)
Объяснение:
• Коллинеарные векторы - это ненулевые векторы, которые лежат либо на одной прямой, либо на параллельных прямых.
• Сонаправленные векторы - это коллинеарные ненулевые векторы, которые одинаково направлены (в одну сторону).
• Противоположно направленные векторы - это коллинеарные ненулевые векторы, которые направлены в противоположную сторону.
• Равные векторы - это сонаправленные векторы, с равными длинами.
• Нулевой вектор - это вектор у которого начало и конец совпадают (он обозначается точкой).
• Неколинерные векторы - это ненулевые векторы, которые НЕ лежат на одной прямой, либо НЕ лежат на параллельных прямых.
1 вариант.
1) Если известны высота призмы и её диагонали (это катет и гипотенуза прямоугольного треугольника), то находим второй катет в треугольниках, составленных из Н = 2 см, D1 = 8 см D2 = 5 см.
Получаем диагонали ромба в основании призмы.
d1 = √(8² - 2²) = √(64 - 4) = √60 = 2√15 см.
d2 = √(5² - 2²) = √(25 - 4) = √21 см.
Зная диагонали основания, находим его сторону.
а = √((d1/2)² + (d2/2)²) = √(15 + (21/4)) = √(81/4) = 9/2 = 4,5 см.
2) Дано диагональное сечение куба с площадью, равной 49√2 см².
Его площадь равна: S = ad = a*(a√2) = a²√2.
Приравняем: a²√2 = 49√2, отсюда а = √49 = 7 см.
Диагональ куба определяется по формуле:
D = a√3 = 7√3.