воспользуемся следующий признаокм: " если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны".
треугольник авс - равнобедренный.
отсюда следует, что медиана bd - также является биссектрисой угла авс. то есть угол mbd = углу dbn.
по условию bm = bn. bd - общая сторона.
таким образом треугольники mbd = треугольнику dbn по двум сторонам и углу между ними.
ответ:
докажем, что треугольники mbd = треугольнику dbn.
воспользуемся следующий признаокм: " если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны".
треугольник авс - равнобедренный.
отсюда следует, что медиана bd - также является биссектрисой угла авс. то есть угол mbd = углу dbn.
по условию bm = bn. bd - общая сторона.
таким образом треугольники mbd = треугольнику dbn по двум сторонам и углу между ними.
если треугольники равны, то и все стороны равны.
отсюда получаем, что dm = dn.
что и требовалось доказать.
объяснение:
Задача 1.
1) АВ = СЕ, так как это диаметры одной окружности.
2) АО=ОВ, ЕО=ОС, так как это радиусы одной окружности.
3) < АОЕ = <ВОС, так как они вертикальные.
4) Треугольники АОЕ и ВОС равны (по первому признаку равенства треугольников: двум сторонам и углу между ними).
АЕ = СВ, так как треугольники равны.
Задача 2.
СО = ОВ = ОА, так как это радиусы одной окружности.
Угол СОА равен углу АОВ, т.к. СОА+АОВ=180° (по рисунку АОВ=90°).
Тругольники СОА и АОВ равны (по первому признаку равенства треугольников: двум сторонам и углу между ними).
АС = АВ, так как треугольники равны.