Авсда1в1с1д1 - куб, точки о и т - середины ребер дд1 и дс соответственно. постройте сечение куба плоскостью, проходящей через точки о,т и перпендикулярной плоскости адс1. вычислите площадь сечения, если длина ребра куба равна 4 см.
Соеденим пункты М, Т и О и получим сечение МТО перпендикулярное плоскости А1ДСАД = ДД1 = 4 см ( по условию)Найдем диогональ АД1 по т. Пифагора из прямоугольного тр. АДД1:AД1^2 = AД^2 +ДД1^2AД1^2 = 4^2 + 4^2AД1^2= 32АД1 = 4 под корнем 2АД1 = АС = Д1С = 4 под корнем 2 (диогонали равных квадратов)МО, МТ и ТО - средние линии треугольников АДД1, АДС и ДД1С соответственноМО = АД1/ 2 = 2 под корнем 2МТ = АС/ 2 = 2 под корнем 2ТО = Д1С/ 2 = 2 под корнем 2МТО - ровносторонний треугольникПлощадь МТО ровна ( см во вложении), где а- сторона этого треугольника.
ответ: 2 корень из 2 см^2