АВСDЕFА1В1С1D1Е1F1 все грани правильной шестиугольной призмы равны 1. Найдите расстояния следующих прямых: АА1 и С1D1 б) АА1 и СD1 в) АА1 и DE1 г) АА1 и BD1
50, а проекция наклонной равна 6 см. Чему равна длина перпендикуляра, проведённого из этой же точки к плоскости?
4) Если прямая перпендикулярна двум радиусам круга, как она расположена по отношению к самому кругу?
5) Сколько можно провести прямых перпендикулярных данной прямой через данную точку, если а) эта точка лежит на прямой; б) эта точка не лежит на прямой?
6) Как между собой располагаются две прямые перпендикулярные одной и той же плоскости?
7) Могут ли перпендикуляр и наклонная, проведённые из одной и той же точки, иметь равные длины?
Конус с углом φ при вершине осевого сечения и радиусом основания r вписан в сферу радиуса R (т. е. вершина конуса лежит на сфере, а основание конуса является сечением сферы, рис. 158, б). Найдите: а) r, если известны R и φ; б) R, если известны r и φ; в) φ, если R = 2r
2.Так как параллелепипед описан вокруг цилиндра, то в основании параллелепипеда лежит квадрат со стороной равной диаметру цилиндра, т.е. . Тогда площадь квадрата (основания) будет равна , а объем
3.Так как по условию призма правильная, то CC1⊥DC и DC⊥AD. Так что по теореме о трех перпендикулярах C1D⊥AD. Далее, в прямоугольном ΔAС1D по теореме Пифагора находим:
50, а проекция наклонной равна 6 см. Чему равна длина перпендикуляра, проведённого из этой же точки к плоскости?
4) Если прямая перпендикулярна двум радиусам круга, как она расположена по отношению к самому кругу?
5) Сколько можно провести прямых перпендикулярных данной прямой через данную точку, если а) эта точка лежит на прямой; б) эта точка не лежит на прямой?
6) Как между собой располагаются две прямые перпендикулярные одной и той же плоскости?
7) Могут ли перпендикуляр и наклонная, проведённые из одной и той же точки, иметь равные длины?
Конус с углом φ при вершине осевого сечения и радиусом основания r вписан в сферу радиуса R (т. е. вершина конуса лежит на сфере, а основание конуса является сечением сферы, рис. 158, б). Найдите: а) r, если известны R и φ; б) R, если известны r и φ; в) φ, если R = 2r
2.Так как параллелепипед описан вокруг цилиндра, то в основании параллелепипеда лежит квадрат со стороной равной диаметру цилиндра, т.е. . Тогда площадь квадрата (основания) будет равна , а объем
3.Так как по условию призма правильная, то CC1⊥DC и DC⊥AD. Так что по теореме о трех перпендикулярах C1D⊥AD. Далее, в прямоугольном ΔAС1D по теореме Пифагора находим: