Бічна сторона рівнобедреного трикутника менша за її основу на 9 см,а відрізки,на які бісектриса кута при основі ділить висоту,проведену до основи відноситься як 4: 5. знайти висоту проведену до основи.
Так как сумма углов любого треугольника равна 180 градусов, то внешний угол будет равен 236°-180°=56°. Это так. Значит ВНУТРЕННИЙ угол треугольника, смежный с внешним, будет равен 180°-56°=124°. Это ТУПОЙ угол, и значит это угол при ВЕРШИНЕ равнобедренного треугольника.
Тогда углы при основании равны (180°-124°):2=28°.
ответ: углы треугольника равны 124°,28° и 28°.
Или так: Данный нам внешний угол - смежный с тупым внутренним(124°), то есть с углом при вершине, противоположной основанию. Внешний угол равен сумме двух внутренних, не смежных с ним (равные углы при основании). Значит углы при основании равны 56°:2=28°.
Пусть D(1) - диаметр окружности, величина которого равна 4 см; D(2) - диаметр окружности, величина которого равна 16 см; r(1) - радиус окружности, с диаметром D(1); r(2) - радиус окружности, с диаметром D(2).
D(1) = r(1) * 2 = 4 см ⇒ r(1) = D(1)/2 = 4/2 = 2 см.
D(2) = r(2) * 2 = 16 см ⇒ r(2) = D(2)/2 = 16/2 = 8 см.
На рисунке изображено внешнее касание окружностей и можно увидеть, что расстояние между центрами окружностей равно сумме их радиусов.
Так как сумма углов любого треугольника равна 180 градусов, то внешний угол будет равен 236°-180°=56°. Это так. Значит ВНУТРЕННИЙ угол треугольника, смежный с внешним, будет равен 180°-56°=124°. Это ТУПОЙ угол, и значит это угол при ВЕРШИНЕ равнобедренного треугольника.
Тогда углы при основании равны (180°-124°):2=28°.
ответ: углы треугольника равны 124°,28° и 28°.
Или так: Данный нам внешний угол - смежный с тупым внутренним(124°), то есть с углом при вершине, противоположной основанию. Внешний угол равен сумме двух внутренних, не смежных с ним (равные углы при основании). Значит углы при основании равны 56°:2=28°.
Подробнее - на -
ответ: 10 см.
Объяснение:
Пусть D(1) - диаметр окружности, величина которого равна 4 см; D(2) - диаметр окружности, величина которого равна 16 см; r(1) - радиус окружности, с диаметром D(1); r(2) - радиус окружности, с диаметром D(2).
D(1) = r(1) * 2 = 4 см ⇒ r(1) = D(1)/2 = 4/2 = 2 см.
D(2) = r(2) * 2 = 16 см ⇒ r(2) = D(2)/2 = 16/2 = 8 см.
На рисунке изображено внешнее касание окружностей и можно увидеть, что расстояние между центрами окружностей равно сумме их радиусов.
Пусть d - расстояние между центрами окружностей.
⇒ d = r(1) + r(2) = 2 + 8 = 10 см.