Більша сторона трикутника дорівнює 5 см. у трикутник вписано коло, яке ділиться точками дотику зі сторонами на дуги, градусні міри яких відносяться як 2: 3: 4. знайдіть невідомі сторони трикутника.
АВСДЕФК - пирамида с вершиной К. КО=4см - высота. КМ - апофема. М∈АВ. Боковая поверхность правильной шестиугольной пирамиды состоит из шести равнобедренных тр-ков, равных ΔАВС, следовательно площадь одного тр-ка: S3=Sбок/6=192/6=32 см². Апофема в тр-ке АВС представляет собой высоту, опущенную на основание. КМ=АВ. S3=КМ·АВ/2=АВ²/2, АВ=√(2·S3)=8 см. Площадь правильного шестиугольника, находящегося в основании, состоит из шести правильных тр-ков. Площадь одного рассчитывается по формуле S=a²√3/4 Sш=6·S=3a²√3/2=96√3 см² V=Sш·КО/3=128√3 см³.
ответ:KN=KM=6 корней из 3
Объяснение:
MO=ON(это радиусы)
Доказываем равенство треугольников по свойству касательных из одной точки к окружности,
Тогда KON=MOK и они по 60 градусов. (120/2=60) градусов.
Есть два прямоугольных треугольника. Радиусы ON и OM находятся по свойство угла в 30 градусов.
2ON=OK
2ON=12 /2(поделили две части)
ON=6
Затем находим всё по теореме Пифагора.
KN+ON=OK(все величины во второй степени)
KN2+36=144
KN2=144-36=108 градусов.
корень из KN=корень из 108 градусов и это 6 корней из 3.
KN=KM(по свойству отрезков касательных)
ответ:KN=KM=6 корней из 3.
М∈АВ.
Боковая поверхность правильной шестиугольной пирамиды состоит из шести равнобедренных тр-ков, равных ΔАВС, следовательно площадь одного тр-ка: S3=Sбок/6=192/6=32 см².
Апофема в тр-ке АВС представляет собой высоту, опущенную на основание. КМ=АВ.
S3=КМ·АВ/2=АВ²/2,
АВ=√(2·S3)=8 см.
Площадь правильного шестиугольника, находящегося в основании, состоит из шести правильных тр-ков. Площадь одного рассчитывается по формуле S=a²√3/4
Sш=6·S=3a²√3/2=96√3 см²
V=Sш·КО/3=128√3 см³.