В плоскости, на равном расстоянии от вершин треугольника, находится центр окружности, описанной около этого треугольника, при этом прямой угол опирается на дугу 180° (вписанный угол равен половине дуги, на которую опирается), а это значит, что гипотенуза прямоугольного треугольника является диаметром окружности, описанной около этого треугольника, а середина гипотенузы является центром этой окружности.
Следовательно, если из середины гипотенузы восстановить перпендикуляр над плоскостью треугольника, то точка А будет находиться на этом перпендикуляре на расстоянии 4 от плоскости.
1) Длина гипотенузы треугольника:
с = √(8²+14²) = √(64+196) = √260
4) Расстояние d от точки А до вершин треугольника, согласно теореме Пифагора:
1)В треугольнике АВС касательные ВА и ВС поделены на две части точками пересечения с окружностью К и М соответственно. Отрезки ВК и ВМ равны по свойству касательных => ВК = 5 =ВМ. 2) Точно также: касательные АВ и АС поделены на две части точками пересечения с окружностью К и L соответственно. Отрезки АК и АL равны по свойству касательных => АК=24=АL 3) то же самое с отрезками МС и LС: они равны. (Их значение неизвестно. 4) АВ +ВС+АС =60; АК +КВ+ВМ+МС+АL+LС=60 Из 1), 2) и 3) => 24+5+5+МС+24+МС=60; МС=1 => АВ=29; ВС=6; АС =25
Известны все стороны, можно по формуле: Sтреугольника= корень(р(р-АВ)(р-ВС)(р-АС), Где р= (АВ+ВС+АС)/2 У меня получилось 60
9
Объяснение:
В плоскости, на равном расстоянии от вершин треугольника, находится центр окружности, описанной около этого треугольника, при этом прямой угол опирается на дугу 180° (вписанный угол равен половине дуги, на которую опирается), а это значит, что гипотенуза прямоугольного треугольника является диаметром окружности, описанной около этого треугольника, а середина гипотенузы является центром этой окружности.
Следовательно, если из середины гипотенузы восстановить перпендикуляр над плоскостью треугольника, то точка А будет находиться на этом перпендикуляре на расстоянии 4 от плоскости.
1) Длина гипотенузы треугольника:
с = √(8²+14²) = √(64+196) = √260
4) Расстояние d от точки А до вершин треугольника, согласно теореме Пифагора:
d² = (√260/2)² + 4² = 260/4 + 16 = 65 + 16 = 81
d = √81 = 9
ответ: 9
2) Точно также: касательные АВ и АС поделены на две части точками пересечения с окружностью К и L соответственно. Отрезки АК и АL равны по свойству касательных => АК=24=АL
3) то же самое с отрезками МС и LС: они равны. (Их значение неизвестно.
4) АВ +ВС+АС =60;
АК +КВ+ВМ+МС+АL+LС=60
Из 1), 2) и 3) => 24+5+5+МС+24+МС=60;
МС=1 => АВ=29; ВС=6; АС =25
Известны все стороны, можно по формуле:
Sтреугольника= корень(р(р-АВ)(р-ВС)(р-АС),
Где р= (АВ+ВС+АС)/2
У меня получилось 60