Не любая , а биссектриса к основанию ( а не к боковой стороне) совпадает с высотой и медианой. Извините, не прочитал, что в равностороннем. Для равнобедренного рассуждение такое: Это вытекает из того, что биссектриса делит треугольник на два равных ( по первому признаку, т.е. по двум сторонам и углу между ними). В этих треугольниках напротив равных углов -равные стороны: отрезки на которые биссектриса делит основание. Значит она медиана. Два угла с вершиной на середине основания тоже равны. А так как они смежные т их сумма равна 180 градусам, то и они равны 90 градусам. Значит биссектриса совпадает с высотой В равностороннем - то же рассуждение для любой стороны. .
, а биссектриса к основанию ( а не к боковой стороне) совпадает с высотой и медианой.
Извините, не прочитал, что в равностороннем. Для равнобедренного рассуждение такое:
Это вытекает из того, что биссектриса делит треугольник на два равных ( по первому признаку, т.е. по двум сторонам и углу между ними). В этих треугольниках напротив равных углов -равные стороны: отрезки на которые биссектриса делит основание. Значит она медиана. Два угла с вершиной на середине основания тоже равны. А так как они смежные т их сумма равна 180 градусам, то и они равны 90 градусам. Значит биссектриса совпадает с высотой
В равностороннем - то же рассуждение для любой стороны.
.
P=12
Объяснение:
Поскольку стороны искомого шестиугольника целочисленные, а углы 120, будем решать на сетке из единичных равносторонних треугольников (ед.).
Правильный шестиугольник со стороной 1 состоит из 6 ед., искомый шестиугольник - из 18 ед.
Искомый шестиугольник виден, его периметр 12.
Попробуем доказать перебором, что он единственный.
Любой шестиугольник с углами 120 (внешние углы 60) можно достроить до равностороннего треугольника, продлив стороны.
Количество ед., из которых состоит равносторонний треугольник, равно квадрату его стороны (сумма последовательных нечетных чисел равна квадрату).
От равностороннего треугольника со стороной t нужно отсечь равносторонние треугольники со сторонами a, b, c и получить площадь 18 ед.
t^2 -a^2 -b^2 -c^2 =18
Из рисунка видно, что t не может быть больше 6 (фигура высотой 1 ед. будет параллелограммом или трапецией, но не шестиугольником).
Перебирая квадраты целых чисел, находим единственное решение:
6^2 -4^2 -1^2 -1^2 =18