Биссектриса треугольника делит противалежащую сторону на части, длины который равны 4 см и 6 см. Найдите длины двух других сторон, если периметр треугольника равен 50 см
Із початку координат провести перпендикуляр до прямої
(x/1)=(y+3/-1)=(z+3/-1).
Найдем проекцию точки O ( 0; 0; 0) на заданную прямую L.
Чтобы найти проекцию точки на прямую, проведем через эту точку плоскость, перпендикулярную данной прямой, используя ее направляющий вектор, который будет вектором нормали к плоскости: a = {1; -1; -1} = n .
Получаем: 1*x – 1*y – 1*z = 0.
Тогда искомая проекция (точка N) – это результат пересечения прямой и плоскости. Чтобы найти это пересечение, запишем параметрические уравнения прямой:
x = t,
y = -t – 3,
z = -t – 3.
Подставим их в уравнение плоскости: t – (-t – 3) – 1(-t – 3) = 0,
t + t + 3 + t + 3 = 0,
3t = -6,
t = -6/3 = -2.
Подставим значение параметра t в координаты переменных прямой.
N: x = -2,
y = -(-2) – 3 = -1,
z = -(-2) – 3 = -1.
N(-2; -1; -1) − - проекция точки O на прямую L .
Тогда уравнение перпендикуляра – это уравнение прямой ON.
Более узкая специализация позволяет сосредоточится исключительно на одном виде деятельности специалисту и не отвлекателься на посторонние действия. с одной стороны это позволяет глубже окунуться в свою специальность и делать работу более качественно и быстро. с другой стороны это позволяет выявлять прогрессивные решения в рамках своей специальности, способствующие увеличению проивзодительности. постоянная работа в рамках выделенной специализации, позволяет выработать навыки, которые и увеличчивают производительность самое главное, это отсутствие у специалиста необходимости в смене вида деятельности при создании одного объекта, на смену вида деятельности уходит время и теряется концентрация. утверждая все это, нельзя забывают важную вещь. человек это не "шестеренка системы", чтобы выполнять строго однотипную работу всю жизнь - прикручивать колеса автомобиля на ковеере и все. выполняя работу по узкой специализации, человек должен и обязан непрерывно обучаться и видеть целостную картину работы всей цепочки и представлять какую именно часть работы он делает и что в целом должно в итоге получиться. так он сможет в полной мере предвидеть тенденции развития, правильно обучаться и развивать общества.
Із початку координат провести перпендикуляр до прямої
(x/1)=(y+3/-1)=(z+3/-1).
Найдем проекцию точки O ( 0; 0; 0) на заданную прямую L.
Чтобы найти проекцию точки на прямую, проведем через эту точку плоскость, перпендикулярную данной прямой, используя ее направляющий вектор, который будет вектором нормали к плоскости: a = {1; -1; -1} = n .
Получаем: 1*x – 1*y – 1*z = 0.
Тогда искомая проекция (точка N) – это результат пересечения прямой и плоскости. Чтобы найти это пересечение, запишем параметрические уравнения прямой:
x = t,
y = -t – 3,
z = -t – 3.
Подставим их в уравнение плоскости: t – (-t – 3) – 1(-t – 3) = 0,
t + t + 3 + t + 3 = 0,
3t = -6,
t = -6/3 = -2.
Подставим значение параметра t в координаты переменных прямой.
N: x = -2,
y = -(-2) – 3 = -1,
z = -(-2) – 3 = -1.
N(-2; -1; -1) − - проекция точки O на прямую L .
Тогда уравнение перпендикуляра – это уравнение прямой ON.
(x – xO)/(xN – xO) = (y – yO)/(yN – yO) = (z – zO)/(zN – zO),
x/(-2) = y/(-1) = z/(-1).