Вравнобедренном треугольнике отношение боковой стороны к основанию равно 4: 3, а периметр на 52 см меньше восьмикратного значения оанования.найдите стороны этого треугольника. на боковых сторонах равнобедренного треугольника авс с основанием ас, отложены равные отрезки ам и сn. медиана вd треугольника авс, пересеает сторону мn в точке о. доказать, что во является медианой треугольника вмn. на продолжении стороны вс треугольника отложен отрезок сd, равный отрезку ас, и построен отрезок аd.отрезок се является биссектрисой треугольника авс, а отрезок сf- медианой треугольника асd. доказать, что сf перпендикулярен се. один из внешних углов треугольника равен 140° , а отношение внутренних углов, не смежных с этим углом равно 3: 4. найти углы треугольника.
W, V - центры
Проведем WK⊥AE, VL⊥AE
BK=1, DL=1 (перпендикуляр из центра к хорде делит ее пополам)
AK=3, AL=6
Проведем WN⊥VL
Понятно, что W - середина AV, N - середина VL
WK=VN=NL=x
Rw =WB =√(WK^2+BK^2) =√(x^2+1)
Rv =VD =√(VL^2+DL^2) =√(4x^2+1)
WV =Rw+Rv (точка касания лежит на линии центров)
WV =√(VN^2+WN^2) => Rw+Rv =√(x^2+9)
√(x^2+1) + √(4x^2+1) = √(x^2+9)
x^2 +1 +4x^2 +1 +2√(x^2+1)√(4x^2+1) = x^2 +9
4(x^2+1)(4x^2+1) = (7-4x^2)^2 // при 7-4x^2 >=0 => x<=√7/2
16x^4 +16x^2 +4x^2 +4 = 49 -56x^2 +16x^4
76x^2 = 45 => x=√(45/76)
Rw =√(45/76 +1) =√(121/76) =11/2√19
Rv =√(4*45/76 +1) =√(256/76) =8/√19