1)∠А=50°, ∠В=х, ∠С=12х ∠А+∠В+∠С=180 50+х+12х=180 13х=130°, х=10° ∠В=10°, ∠С=120° 2) ∠С=90° , ∠В=35°, ∠А=90°-35°=55° ΔАСD, ∠D=90°, ∠ACD=35° 3) ΔABC, ∠A=∠B - 60°, ∠C=2*∠A, ∠A=x, ∠B=x+60, ∠C=2x x+(x+60)+2x=180 4x=180-60=120 x=120÷4 x=30 ∠A=30°, ∠B=30°+60°=90°, ∠C=30°*2=60° 4) Высота разбивает равнобедр. треугольник на 2 прямоугольных треугольника. Высота является в полученном треугольнике - катетом и она в 2 раза меньше боковой стороны т.е. гипотенузы, поэтому катет лежит против угла 30°. Значит углы при основании равнобедренного треугольника по 30°, а угол при вершине 180°-30°-30°=120° ответ: наибольший угол при вершине равнобедренного треугольника.
Пусть b – данная прямая, а точка A принадлежит этой прямой. Возьмем некоторый луч b1 на прямой b с начальной точкой в A. Отложим от луча b1 угол (a1b1), равный 90°. По определению прямая содержащая луч a1 будет перпендикулярная прямой b. Допустим, существует другая прямая перпендикулярная прямой b и проходящая через точку A. Возьмем на этой прямой луч с1, исходящий из точки A и лежащий в той же полуплоскости, что и луч a1. Тогда ∠ (a1b1) = ∠ (c1b1) = 90 º. Но согласно аксиоме 8, в данную полуплоскость можно отложить только один угол, равный 90 º. Следовательно, нельзя провести другую прямую перпендикулярную прямой b через точку A в заданную полуплоскость. Теорема доказана.
∠А+∠В+∠С=180
50+х+12х=180
13х=130°, х=10°
∠В=10°, ∠С=120°
2) ∠С=90° , ∠В=35°, ∠А=90°-35°=55°
ΔАСD, ∠D=90°, ∠ACD=35°
3) ΔABC, ∠A=∠B - 60°, ∠C=2*∠A,
∠A=x, ∠B=x+60, ∠C=2x
x+(x+60)+2x=180
4x=180-60=120
x=120÷4
x=30
∠A=30°, ∠B=30°+60°=90°, ∠C=30°*2=60°
4) Высота разбивает равнобедр. треугольник на 2 прямоугольных треугольника. Высота является в полученном треугольнике - катетом и она в 2 раза меньше боковой стороны т.е. гипотенузы, поэтому катет лежит против угла 30°. Значит углы при основании равнобедренного треугольника по 30°,
а угол при вершине 180°-30°-30°=120°
ответ: наибольший угол при вершине равнобедренного треугольника.
Пусть b – данная прямая, а точка A принадлежит этой прямой. Возьмем некоторый луч b1 на прямой b с начальной точкой в A. Отложим от луча b1 угол (a1b1), равный 90°. По определению прямая содержащая луч a1 будет перпендикулярная прямой b.
Допустим, существует другая прямая перпендикулярная прямой b и проходящая через точку A. Возьмем на этой прямой луч с1, исходящий из точки A и лежащий в той же полуплоскости, что и луч a1. Тогда ∠ (a1b1) = ∠ (c1b1) = 90 º. Но согласно аксиоме 8, в данную полуплоскость можно отложить только один угол, равный 90 º. Следовательно, нельзя провести другую прямую перпендикулярную прямой b через точку A в заданную полуплоскость. Теорема доказана.