В основании правильной пирамиды - правильный треугольник. Вершина S проецируется в центр О основания. Высота правильного треугольника СН= (√3/2)*а, где а - сторона треугольника. СН=13√3/2. В правильном треугольнике высота=медиана и делится центром в отношении 2:1, считая от вершины. => HO=(1/3)*CH, а СО=(2/3)*СН или СО=13√3/3, НО=13√3/6.
Розвязання: Нехай даний трикутник АВС з основою АС і бічними сторонами АВ=ВСAK, CF - медіани, проведені до бічних сторін бічні сторони трикутника рівні за означенням рівнобедреного трикутника. АВ=ВС, а отже будуть рівні їі їт половини 12ВС=12АB, тобтоCK=AF кути при основі трикутника рівні (властивість рівнобедреного трикутника),тобто кут А=кут С Трикутник АСF=CAK за двома сторонами і кутом між ними відповідноCK=AF, кут А=кут С, АС=СА). З рівності трикутників випливає рівність медіан СF=AKю Доведено
В основании правильной пирамиды - правильный треугольник. Вершина S проецируется в центр О основания. Высота правильного треугольника СН= (√3/2)*а, где а - сторона треугольника. СН=13√3/2. В правильном треугольнике высота=медиана и делится центром в отношении 2:1, считая от вершины. => HO=(1/3)*CH, а СО=(2/3)*СН или СО=13√3/3, НО=13√3/6.
По Пифагору:
Боковое ребро пирамиды SC=√(CO²+SO²) = √(313/3).
Апофема (высота боковой грани) SH=√(НO²+SO²) = √(745/12).
Боковая поверхность Sбок = (1/2)*3*АВ*SH =(39/4)*(√(745/3).
Розвязання: Нехай даний трикутник АВС з основою АС і бічними сторонами АВ=ВСAK, CF - медіани, проведені до бічних сторін бічні сторони трикутника рівні за означенням рівнобедреного трикутника. АВ=ВС, а отже будуть рівні їі їт половини 12ВС=12АB, тобтоCK=AF кути при основі трикутника рівні (властивість рівнобедреного трикутника),тобто кут А=кут С Трикутник АСF=CAK за двома сторонами і кутом між ними відповідноCK=AF, кут А=кут С, АС=СА). З рівності трикутників випливає рівність медіан СF=AKю Доведено