Боковые грани пирамиды MABCD - правильные треугольники. На ребрах AD и CD взяты соответственно точки P и Q - середины этих ребер. Найдите угол между плоскостями MBP и MBQ.
1)Точки F и E-середины сторон BC и BA треугольника ABC.
Отрезок, соединяющий середины двух сторон треугольника, является его средней линией, равен половине третьей стороны и параллелен ей.
АЕ=ВЕ=10 => АВ=10•2=20 см
CF=BF=> ВС=16•2=32 см
АС=EF•2=14•2=28 см.
Периметр треугольника - сумма длин его сторон.
Р(АВС)=20+28+32=80 см
Вариант решения.
Так как отрезок ЕF – средняя линия ∆ АВС и параллелен АС, углы при основаниях ∆ АВС и ∆ ВЕF равны как соответственные углы при пересечении параллельных прямых секущими АВ и СВ, и угол В - общий.
Поэтому ∆ АВС~∆ ВЕF по равным углам.
АВ=2•ВЕ=>
Коэффициент подобия этих треугольников равен АВ:ВЕ. k=2
Р(BEF)=BE+BF+EF=40 см
Отношение периметров подобных фигур равно коэффициенту подобия их линейных размеров. ⇒
Р(АВС)=2Р(BEF)=2•40=80 см
2) Примем меньшее основание трапеции равным а. Тогда большее – 2а
Средняя линия трапеции равна половине суммы оснований.
Угол равный 60градусов будет лежать против стороны равной 5 см, т. к. этот угол меньше 90 градусов. значит второй угол образованный этими диагоналями равен 120 гр. (т. к. вместе они образуют развернутый угол) пусть прямоугольник будет АВСД, точка пересечения диагоналей О, тогда в треугольнике АОВ опускаем высоту ОК, т. к. треугольник равносторонний, то ОК будет и медианой и биссектрисой полученный угол КОА будет равен 30 гр. а отрезки ВК и АК равны по 2,5 см. По правилу "сторона лежащая против угла в 30 гр равна половине гипотенузы"(в треугольнике АОК) следует, что гипотенуза т. е. сторона АО равна двум длинам стороны АК, т. е. АО равна 5 см. У диагонали АС точка О является ее центром симметрии, значит АС равна 10 см Теперь рассмотрим треугольник АСВ, в котором нам известно: АВ рана 5 см, АС = 10 см. Треугольник прямоугольный. По теореме Пифагора сторона ВС2 = АС2(в квадрате) - АВ2. отсюда следует ВС равна 5корень из5 площадь прямоугольника равна АВ умножить на ВС, т. е. выходит S=5*5 корень из 5=25к орень из 5
Большее 4•2=8 см
Меньшее основание трапеции равно 4 см.
Объяснение:
1)Точки F и E-середины сторон BC и BA треугольника ABC.
Отрезок, соединяющий середины двух сторон треугольника, является его средней линией, равен половине третьей стороны и параллелен ей.
АЕ=ВЕ=10 => АВ=10•2=20 см
CF=BF=> ВС=16•2=32 см
АС=EF•2=14•2=28 см.
Периметр треугольника - сумма длин его сторон.
Р(АВС)=20+28+32=80 см
Вариант решения.
Так как отрезок ЕF – средняя линия ∆ АВС и параллелен АС, углы при основаниях ∆ АВС и ∆ ВЕF равны как соответственные углы при пересечении параллельных прямых секущими АВ и СВ, и угол В - общий.
Поэтому ∆ АВС~∆ ВЕF по равным углам.
АВ=2•ВЕ=>
Коэффициент подобия этих треугольников равен АВ:ВЕ. k=2
Р(BEF)=BE+BF+EF=40 см
Отношение периметров подобных фигур равно коэффициенту подобия их линейных размеров. ⇒
Р(АВС)=2Р(BEF)=2•40=80 см
2) Примем меньшее основание трапеции равным а. Тогда большее – 2а
Средняя линия трапеции равна половине суммы оснований.
6=( а+2а):2
а+2а=12
3а=12 ⇒ а=12:3=4
Меньшее основание трапеции равно 4 см.
Большее 4•2=8 см
значит второй угол образованный этими диагоналями равен 120 гр. (т. к. вместе они образуют развернутый угол)
пусть прямоугольник будет АВСД, точка пересечения диагоналей О,
тогда в треугольнике АОВ опускаем высоту ОК, т. к. треугольник равносторонний, то ОК будет и медианой и биссектрисой
полученный угол КОА будет равен 30 гр. а отрезки ВК и АК равны по 2,5 см.
По правилу "сторона лежащая против угла в 30 гр равна половине гипотенузы"(в треугольнике АОК) следует, что гипотенуза т. е. сторона АО равна двум длинам стороны АК, т. е. АО равна 5 см.
У диагонали АС точка О является ее центром симметрии, значит АС равна 10 см
Теперь рассмотрим треугольник АСВ, в котором нам известно: АВ рана 5 см, АС = 10 см. Треугольник прямоугольный.
По теореме Пифагора сторона ВС2 = АС2(в квадрате) - АВ2. отсюда следует ВС равна 5корень из5
площадь прямоугольника равна АВ умножить на ВС, т. е. выходит S=5*5 корень из 5=25к орень из 5