Боковые ребра треугольной пирамиды равны 4см, 8см, 7см. Одно из них перпендикулярно к плоскости основания. Чему равна высота пирамиды? Чертеж и решение
Задача 1) Сторона треугольника равна 21, а две другие стороны образуют угол в 60° и относятся как 3:8. Найдите эти стороны. Примем коэффициент отношения сторон х. Тогда АВ=3х, АС=8х По т. косинусов ВС²=АВ²+АС² - 2*АВ*АС*cos(60°) 441=9х²+64х²-2*24х²*1/2 49х²=441 х²=9 х=3 АВ=3*3=9 АС=3*8=24
Задача 2) Найдите радиус окружности, описанной около треугольника ос сторонами 5 и 8 и углом между ними 60° Пусть дан треугольник АВС. По условию АВ=5, АС=8, угол ВАС=60° R=abc:4S Чтобы воспользоваться этой формулой, нужно найти третью сторону треугольника. По т.косинусов ВС²=АВ²+АС²-2*АВ*АС*cos(60°) ВС²=25+64-80*1/2ВС²=49 ВС=7 S(АВС)=АВ*АС*sin(60):2=(5*8*√3/)4= 10√3 R=5*8*7:(4*10√3)=7/√3
Сторона треугольника равна 21, а две другие стороны образуют угол в 60° и относятся как 3:8. Найдите эти стороны.
Примем коэффициент отношения сторон х.
Тогда АВ=3х, АС=8х
По т. косинусов ВС²=АВ²+АС² - 2*АВ*АС*cos(60°)
441=9х²+64х²-2*24х²*1/2
49х²=441
х²=9
х=3
АВ=3*3=9
АС=3*8=24
Задача 2)
Найдите радиус окружности, описанной около треугольника ос сторонами 5 и 8 и углом между ними 60°
Пусть дан треугольник АВС.
По условию АВ=5, АС=8, угол ВАС=60°
R=abc:4S
Чтобы воспользоваться этой формулой, нужно найти третью сторону треугольника. По т.косинусов
ВС²=АВ²+АС²-2*АВ*АС*cos(60°)
ВС²=25+64-80*1/2ВС²=49
ВС=7
S(АВС)=АВ*АС*sin(60):2=(5*8*√3/)4= 10√3
R=5*8*7:(4*10√3)=7/√3
угол прямоугольника равен 90°
диагональю он делится в отношении 4: 5, т.е. на углы
90: (4+5)*4=40°
и 90: (4+5)*5=50°
диагонали прямоугольника равны и точкой пересечения со сторонами прямоугольника образуют равнобедренные треугольники, сумма углов которых 180°
углы треугольника с боковой стороной равны 40°,40°,100°
углы треугольника, образованного диагоналями с основанием, равны
50°,50°,80°.
ответ: диагонали прямоугольника при пересечении образуют углы 100°и 80°