Быстрее №4. доказать равенство треугольников,
если угол кат равен углу ако
№5.в равнобедренном треугольнике основание равно 4 см, а периметр равен 20 см. вычислите боковые стороны треугольника.
№6. доказать равенство треугольников, м
если угол вмс равен углу сме.
МК/АБ=МН/АС=к
8/4=12/6=2
треугольники АБС и МНК подобны
угол С=180-80-60=40
по 2 свойству подобия (подобие сохраняет величины углов)
угол А=М=80
угол В=К=60
угол С=Н=40
2. т.к. МК II АС => треугольники АВС и МВК подобные.
ВМ:АМ=1:4
пусть ВМ=х, тогда АМ=4х, тогда АВ=х+4х=5х =>
МВ:АВ=1:5
коэффициент подобия=1:5=0,2
Мы знаем, что отношение периметров подобных треугольников равно коэффициенту подобия =>
периметр треугольника МВК : периметру треугольника АВС = 1:5
периметр треугольника МВК=периметр треугольника АВС : 5
периметр треугольника МВК=25:5=5см.
Отрезки биссектрисы, разделённые точкой пресечения биссектрис (точкой О), имеют отношение большего к меньшему как (b+c):а, где а - сторона к которой проведена биссектриса, b и с - боковые стороны угла биссектрисы.
Значит в нашем треугольнике ВО/ОД=(АВ+ВС)/АС=2АВ/АС,
АО/ОФ=(АВ+АС)/АВ.
Пусть ∠АОВ=∠ДОФ=α.
Запишем формулы нахождения площадей треугольников АОВ и OФД и сразу разделим их как показано далее по предложенному отношению:
S(ΔАОВ) = 0.5·АО·ВО·sinα
-------------------------------------- =6:1,
S(ΔOФД) = 0.5·ОД·ОФ·sinα
(ВО/ОД)·(АО/ОФ)=6,
2АВ·(АВ+АС)/(АВ·АС)=6,
2АВ+2АС=6АС,
АВ=2АС,
Итак, АС/АВ=1/2=1:2 - это ответ.