1) из того, что вд - медиана, - равенство площадей треугольников авд и свд.
2) из равенства площадей - равенство сторон ав и вс.
3) из равенства сторон - вд - не только медиана треугольника авс, но и биссектриса (угол авд = углу свд) и высота (вд перпендикулярна ас).
4) из перпендикулярности вд к ас треугольник авд - прямоугольный.
5) из отношения 1: 2 катета вд к гипотенузе ав - угол а=30 градусов.
6) из суммы углов треугольника = 180 градусов - угол авд = 60 градусов.
7) из 3) угол свд = 60 градусов.
8) найти угол fвс.
9) сравнить угол fвс с углом свд.
10) сделать вывод.
успеха!
1.Треугольник ABD = 1. Угол ВАD = CAD
2. BDA=CDA
треугольнику ADC
3.AD - общая сторона.
Второй признак равенства
треугольников
2.
Углы 1 и 2 вертикальные, значит они
равны, следовательно треугольники, по двум углам и стороне, равны. Исходя из этого, СD делиться попалам в точки О
3.
<АСО=<1 как вертикальные углы.
<BDO=<2 как вертикальные углы. Но
<1=<2, значит
<ACO=<BDO.
<AOC=<BOD как вертикальные углы.
Значит, треугольники АСО и BDO
равны по второму признаку: сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней
углам другого треугольника: - ОС=ОD по условию;
- <ACO=<BDO как доказано выше;
.<AOC=<BOD как доказано выше. У равных треугольников АСО и BDO равны соответственные углы А и В.
4.
1) из того, что вд - медиана, - равенство площадей треугольников авд и свд.
2) из равенства площадей - равенство сторон ав и вс.
3) из равенства сторон - вд - не только медиана треугольника авс, но и биссектриса (угол авд = углу свд) и высота (вд перпендикулярна ас).
4) из перпендикулярности вд к ас треугольник авд - прямоугольный.
5) из отношения 1: 2 катета вд к гипотенузе ав - угол а=30 градусов.
6) из суммы углов треугольника = 180 градусов - угол авд = 60 градусов.
7) из 3) угол свд = 60 градусов.
8) найти угол fвс.
9) сравнить угол fвс с углом свд.
10) сделать вывод.
успеха!
1.Треугольник ABD = 1. Угол ВАD = CAD
2. BDA=CDA
треугольнику ADC
3.AD - общая сторона.
Второй признак равенства
треугольников
2.
Углы 1 и 2 вертикальные, значит они
равны, следовательно треугольники, по двум углам и стороне, равны. Исходя из этого, СD делиться попалам в точки О
3.
<АСО=<1 как вертикальные углы.
<BDO=<2 как вертикальные углы. Но
<1=<2, значит
<ACO=<BDO.
<AOC=<BOD как вертикальные углы.
Значит, треугольники АСО и BDO
равны по второму признаку: сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней
углам другого треугольника: - ОС=ОD по условию;
- <ACO=<BDO как доказано выше;
.<AOC=<BOD как доказано выше. У равных треугольников АСО и BDO равны соответственные углы А и В.
4.