Центр окружности описанной около трапеции, лежит на большим основанием. Найдите периметр этой трапеции, если диагонали равна 40см, а боковая сторона 30см.
Вообще при параллельных прямых и секущей образуется 8 углов, в значений всего 2, т.к. они там все попарно равны, на рисунке равны 1 и 3 как вертикальные, 1 и 5 как соответственные, 5 и 7 как вертикальные
/1=/3=/5=/7
И соответственно также: /2=/4=/6=/8
Это верно для обоих случаев в этой задаче
Теперь к решению:
1.
Предположим, что угол 2 равен 35 градусов
Тогда угол 1, как смежный с ним, равен 180-35=145 градусов, остальное доказывается так же, как я расписал выше, все углы будут либо 35, либо 135 градусов, это основные свойства.
2.
Предположим, что угол 2 это х градусов, тогда угол 1 это 4х градусов, составляем уравнение:
х+4х=180
5х=180
х=36
Тогда угол 2 равен 36 градусов
А угол 1 равен 144 градуса
И остальные тоже соответственно равны им по свойствам углов
Объяснение:
Вообще при параллельных прямых и секущей образуется 8 углов, в значений всего 2, т.к. они там все попарно равны, на рисунке равны 1 и 3 как вертикальные, 1 и 5 как соответственные, 5 и 7 как вертикальные
/1=/3=/5=/7
И соответственно также: /2=/4=/6=/8
Это верно для обоих случаев в этой задаче
Теперь к решению:
1.
Предположим, что угол 2 равен 35 градусов
Тогда угол 1, как смежный с ним, равен 180-35=145 градусов, остальное доказывается так же, как я расписал выше, все углы будут либо 35, либо 135 градусов, это основные свойства.
2.
Предположим, что угол 2 это х градусов, тогда угол 1 это 4х градусов, составляем уравнение:
х+4х=180
5х=180
х=36
Тогда угол 2 равен 36 градусов
А угол 1 равен 144 градуса
И остальные тоже соответственно равны им по свойствам углов
ответ:Дан ромб, сторона которого равна 17 см, а разность диагоналей - 14 см.
Диагонали d1 и d2 ромба перпендикулярны, образуют 4 треугольника.
По заданию d1 - d2 = 14. Разделим на 2 обе части.
(d1/2) - (d2/2) = 7.
Обозначим (d1/2) за х - это катет треугольника.
Второй катет равен х - 7.
По Пифагору a ² = (d1/2) ² + (d2/2) ².
289 = x² + (x - 7) ².
289 = x² + x² - 14x + 49.
2x² - 14x = 240 разделим на 2 и получаем квадратное уравнение.
х² - 7 х - 120 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D = (-7) ^2-4*1 * (-120) = 49-4 * (-120) = 49 - (-4*120) = 49 - (-480) = 49+480=529;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1 = (√529 - (-7)) / (2*1) = (23 - (-7)) / 2 = (23+7) / 2=30/2=15;
x_2 = (-√529 - (-7)) / (2*1) = (-23 - (-7)) / 2 = (-23+7) / 2=-16/2=-8.
Один катет получен: (d1/2) = 15 см, второй равен 15 - 7 = 8 см.
Площадь ромба равна:
S = 4 * (1/2) * 15*8 = 15*16 = 240 см².
Объяснение: