Т.к. E и F - внутренние точки отрезка АВ, и по условию АЕ=BF, то
для EB=AB-AE и для AF=AB-BF следует, что EB=AF.
Рассмотрим прямоугольные ΔADF и ΔВСЕ. У них: 1) АD=BC (противолежащие стороны прямоугольника); 2) AF=EB (по доказанному выше). Значит, ΔADF = ΔВСЕ по двум катетам.
Из равенства этих треугольников следует, что ∠DFA=∠СЕВ. Отсюда, ΔEGF - равнобедренный с основанием EF, тогда GF=GE. Доказан пункт Б).
Т.к. АВСD - прямоугольник, то АВ║CD. Тогда ∠EFG=∠GDC(как накрестлежащие при секущей FD) и ∠FEG=∠GCD (как накрестлежащие при секущей ЕС). Отсюда, ΔDGС - равнобедренный с основанием DC, тогда DG=GC. Доказан пункт A).
Объяснение:
ответ
4,9/5
15
liftec74
ученый
249 ответов
60.5 тыс. пользователей, получивших
ответ: 1) Рabcd=22 см 2) Pabcd=32 см
Объяснение:
Дан параллелограмм ABCD. Угла А и С острые. В и D тупые. Тогда:
1) ВК - биссектриса угла В. АК=4 см и КD= см =>AD=BC=4+3=7 см
Так как ВК-биссектриса, то угол АВК=углу СВК.
Угол СВК=АКВ , так как углы СВК и АКВ накрест лежащие и AD II BC
Тогда угол АКВ=АВК => треугольник АВК равнобедренный=> АВ=АК=4 см
АВ=CD=4 cm
=> Pabcd=AB*2+AD*2=4*2+7*2=8+14=22 см
2) АМ - биссектриса угла А ВМ=5 см МС=6 см => BC=AD=5+6=11 см
Далее все аналогично пункта 1.
MAD=BAM, так MAD ы BAM накрест лежащие и BC II AD
=> BAM=BMA
=> АВС - равнобедренный треугольник => AB=BM=5 cm
=>P abcd= 5*2+ 11*2=10+22=32 см
Рисунок - во вложении.
Т.к. E и F - внутренние точки отрезка АВ, и по условию АЕ=BF, то
для EB=AB-AE и для AF=AB-BF следует, что EB=AF.
Рассмотрим прямоугольные ΔADF и ΔВСЕ. У них: 1) АD=BC (противолежащие стороны прямоугольника); 2) AF=EB (по доказанному выше). Значит, ΔADF = ΔВСЕ по двум катетам.
Из равенства этих треугольников следует, что ∠DFA=∠СЕВ. Отсюда, ΔEGF - равнобедренный с основанием EF, тогда GF=GE. Доказан пункт Б).
Т.к. АВСD - прямоугольник, то АВ║CD. Тогда ∠EFG=∠GDC(как накрестлежащие при секущей FD) и ∠FEG=∠GCD (как накрестлежащие при секущей ЕС). Отсюда, ΔDGС - равнобедренный с основанием DC, тогда DG=GC. Доказан пункт A).