Пусть A и B – две соседние вершины правильного многоугольника. Проведем биссектрисы углов многоугольника из вершин A и B. Пусть O – точка их пересечения. Треугольник AOB – равнобедренный с основанием AB и углами при основании, равными α / 2, где α – градусная мера угла многоугольника. Соединим точку O с вершиной C, соседней с B. Треугольники AOB и BOC равны по первому признаку равенства треугольников (теорема 4.1), так как AB = BC, OB – общая сторона, OBC = α / 2 = OBA. Отсюда имеем OC = OB = OA. OCB = α / 2. Так как C = α, то CO – биссектриса угла C. Аналогично, рассматривая последовательно вершины, соседние с ранее рассмотренными, получаем, что каждый треугольник, у которого одна сторона – сторона многоугольника, а противолежащая вершина – точка O, является равнобедренным. Все эти треугольники имеют равные боковые стороны и равные высоты, опущенные на основания. Отсюда следует, что все вершины треугольника равноудалены от точки O на расстояние длины боковой стороны и лежат на одной окружности, а все стороны многоугольника касаются окружности с центром в точке O и радиусом, равным высотам треугольников, опущенным из вершины O.
Проведём перпендикуляр А!Р⊥АВ. В равнобедренной трапеции АА1В1В АР=(АВ-А1В1)/2=(4-2)/2=1 дм. В прямоугольном тр-ке АА1Р А1Р²=АА1²-АР²=2²-1²=3, А1Р=√3 дм - апофема.
Точки О и О1 - центры оснований (квадратов), О1К⊥А1В1, ОМ⊥АВ, значит О1К=А1В1/2=1 дм, ОМ=АВ/2=2 дм. Проведём КН⊥ОМ. МН=ОМ-ОН=ОМ-О1К=2-1=1 дм. В тр-ке KMH КН²=КМ²-МН², КМ=А1Р. КН²=3-1=2, О1О=КН=√2 дм - высота.
Если нужны высота и апофема полной пирамиды, то отрезок А1В1 в боковой грани пирамиды с основанием АВ меньше этого основания в два раза и А1В1║АВ, значит А1В1 - средняя линия треугольника (боковой грани полной пирамиды). Следовательно апофема полной пирамиды равна КМ·k=КМ·2=2√3 дм, а высота 2·О1О=2√2 дм.
Теорема доказана
Проведём перпендикуляр А!Р⊥АВ. В равнобедренной трапеции АА1В1В АР=(АВ-А1В1)/2=(4-2)/2=1 дм.
В прямоугольном тр-ке АА1Р А1Р²=АА1²-АР²=2²-1²=3,
А1Р=√3 дм - апофема.
Точки О и О1 - центры оснований (квадратов), О1К⊥А1В1, ОМ⊥АВ, значит О1К=А1В1/2=1 дм, ОМ=АВ/2=2 дм.
Проведём КН⊥ОМ. МН=ОМ-ОН=ОМ-О1К=2-1=1 дм.
В тр-ке KMH КН²=КМ²-МН², КМ=А1Р.
КН²=3-1=2,
О1О=КН=√2 дм - высота.
Если нужны высота и апофема полной пирамиды, то отрезок А1В1 в боковой грани пирамиды с основанием АВ меньше этого основания в два раза и А1В1║АВ, значит А1В1 - средняя линия треугольника (боковой грани полной пирамиды). Следовательно апофема полной пирамиды равна КМ·k=КМ·2=2√3 дм, а высота 2·О1О=2√2 дм.