Через дві твірні конуса кут між якими дорівнює бета проведено переріз який перетинає основу по зорді довжиною a. знайдіть обєм конуcа якщо твірна наxилена до площини пiд кутом альфа
Теорема , обратная теореме Пифагора " Если сумма квадратов двух сторон треугольника равна квадрату третьей стороны, то такой треугольник прямоугольный."
Если геометрическое тело составлено из геометрических тел, не имеющих общих внутренних точек, то объем данного тела равен сумме объемов тел его составляющих;
Объем куба, ребро которого равно единице измерения длины, равен единице;
Равные геометрические тела имеют равные объемы.
4)Две фигуры называются на плоскости (в пространстве) называются равновеликими, если их площади (объемы) равны. * Любые две простые равновеликие фигуры на плоскости (в том числе, например, равновеликие многоугольники) равносоставлены.
5)Две фигуры и называются подобными, если существует подобие, переводящее одну из них в другую. Подобием называется преобразование пространства, при котором расстояния между точками изменяются в одно и то же число раз
6) Две фигуры называются подобными, если они переводятся одна в другую преобразованием подобия. ... Подобием называется преобразование пространства, при котором расстояния между точками умножаются на одно и то же положительное число
7) Для подобных фигур на плоскости, имеющих площадь, верна теорема: отношение площадей подобных фигур равно квадрату коэффициента подобия. Для подобных пространственных тел, имеющих объем, верна аналогичная теорема: отношение объемов подобных тел равно кубу коэффициента подобия.
Даны точки A (-10;3), B (2;9), C (3;7).
Запишите уравнение окружности, описанной около треугольника ABC.
Объяснение:
1)Найдем длины сторон ( вдруг треугольник равносторонний).
АВ=√( (2+10)²+(9-3)²)=√180 ,
ВС=√( (3-2)²+(7-9)²)=√(1+4)=√5 ,
АС=√( (3+10)²+(7-3)²)=√(169+16)=√185. Наибольшая сторона АС.
Проверим т. обратную теореме Пифагора :
АС²=(√185)²=185 и АВ²+ВС²=(√180)²+(√5)²=180+5=185. Ура
185=185⇒ΔАВС-прямоугольный , с гипотенузой АВ.
2)Центр О(х;у) описанной окружности около прямоугольного треугольника лежит на середине гипотенузы. Найдем координаты О
х(О)=( (х(А)+х(В) ):2 , х(О)=(-10+2):2=-4,
у(О)=( (у(А)+у(В) ):2 , у(О)=(3+9):2=6, центр О(-4;6).
Радиус окружности r=1/2*AB , r=1/2*√185.
3) (x +4)²+ (y – 6)² = (1/2*√185)² , (x +4)²+ (y – 6)² = 46,25
Теорема , обратная теореме Пифагора " Если сумма квадратов двух сторон треугольника равна квадрату третьей стороны, то такой треугольник прямоугольный."
Уравнение окружности (x – х₀)²+ (y – у₀)² = R² , где (х₀; у₀)-координаты центра.
1) кг
2) литры
3) Свойства объемов тел
Объем тела есть неотрицательное число;
Если геометрическое тело составлено из геометрических тел, не имеющих общих внутренних точек, то объем данного тела равен сумме объемов тел его составляющих;
Объем куба, ребро которого равно единице измерения длины, равен единице;
Равные геометрические тела имеют равные объемы.
4)Две фигуры называются на плоскости (в пространстве) называются равновеликими, если их площади (объемы) равны. * Любые две простые равновеликие фигуры на плоскости (в том числе, например, равновеликие многоугольники) равносоставлены.
5)Две фигуры и называются подобными, если существует подобие, переводящее одну из них в другую. Подобием называется преобразование пространства, при котором расстояния между точками изменяются в одно и то же число раз
6) Две фигуры называются подобными, если они переводятся одна в другую преобразованием подобия. ... Подобием называется преобразование пространства, при котором расстояния между точками умножаются на одно и то же положительное число
7) Для подобных фигур на плоскости, имеющих площадь, верна теорема: отношение площадей подобных фигур равно квадрату коэффициента подобия. Для подобных пространственных тел, имеющих объем, верна аналогичная теорема: отношение объемов подобных тел равно кубу коэффициента подобия.
8) цилиндр, конус