Через каждую вершину треугольника параллельно его противоположной стороне провели прямые, полученные три прямые образовали новый треугольник. Докажите, что вершины исходного треугольника являются серединами сторон нового треугольника.
Бери циркуль, линейку, карандаш, строй сначала квадрат, будем его крутить. Пусть квадрат называется незатейливо АВСД, крутить будем относительно вершины А. 1. Ставишь циркуль иголкой в вершину А, вторую ножку циркуля совмещаешь с точкой В. Проводишь окружность радиуса АВ с центром в А. 2. Иголку циркуля переносишь в точку В, и не изменяя раствор циркуля, делаешь на окружности в направлении вращения засечку. 3. Переносишь иголку циркуля на засечку, и продолжая в том же направлении, делаешь на окружности вторую засечку. Это будет точка В1 - новая вершина повёрнутого квадрата. 4. Далее шаги 2 и 3 повторяешь для точки Д, и таким же образом делаешь первую засечку, и вторую засечку. Два шага по окружности. Второй шаг даст тебе точку Д1 - новую вершину повёрнутого квадрата. 5. Возвращаешь иголку циркуля в точку центра вращения А. Строишь окружность (на самом деле будет достаточно половины окружности в направлении вращения) радиусом как диагональ квадрата, то есть АС. 6. Таким же образом делаешь последовательно две засечки, и вторая даст тебе точку С1 - новую точку повёрнутого квадрата. 7. Соединяешь последовательно точки А В1 С1 Д1, и получаешь повёрнутый квадрат. Если всё сделано аккуратно, без болтанки циркулем и тремора рук, то картинка получится вполне красивая.
48
Объяснение:
:
Боковая сторона равнобедренного треугольника равна 10, а основание равно 12. Найдите площадь этого треугольника.
Дано:
равнобедренный треугольник АВС,
АВ и ВС — боковые стороны,
АВ = 10,
АС — основание,
АС = 12.
Найти площадь равнобедренного треугольника АВС — ?
Рассмотрим равнобедренный треугольник АВС. Проведем высоту АО. Она является медианой. Следовательно АО = ОС = 12 : 2 = 6.
Рассмотрим прямоугольный треугольник АВО. По теореме Пифагора (квадрат гипотенузы равен сумме квадратов катетов):
АВ^2 = АО^2 + ВО^2;
ВО^2 = АВ^2 - АО^2;
ВО^2 = 100 - 36;
ВО^2 = 64;
ВО = 8.
S АВС = 1/2 * ВО * АС;
S АВС = 1/2 * 8 * 12;
S АВС = 4 * 12;
S АВС = 48.
ответ: 48.