Через концы отрезка MN и его середину К проведены параллельные прямые, пересекающие плоскость α в точках M 1, , N1 и К1 . Найдите длину отрезка КК1 , если отрезок MN не пересекает α и ММ1 = 12см, NN1= 4 см.
т.е. длина окружности делится на ее градусную меру и умножается на величину угла сектора.
По условию •α=2π, откуда
Формула площади кругового сектора S=•α, т.е. площадь полного круга делится на его градусную меру и умножается на градусную меру сектора.
Подставим в формулу площади найденное из длины дуги значение R:
По условию π•360°/α=6π ⇒
α=60°⇒ R=360°:60°=6 см
Проведем биссектрису ОН угла сектора и к точке её пересечения с окружностью проведем касательную . Продлим стороны угла сектора до пересечения с касательной в т.А и В.
∆ АОВ - равносторонний с высотой ОН=R=6
Радиус вписанной в правильный треугольник окружности равен 1/3 его высоты.
Сделаем рисунок к задаче.
Продлим сторону АD и проведем к ней перпендикуляр СН1=СН,
так как АD параллельна ВС, а отрезки перпендикуляров между параллельными прямыми равны.
АН1=АD+DН1
Рассмотрим прямоугольный треугольник АСН1
Гипотенуза АС=10
Катет СН1=6
Найдем АН1 по теореме Пифагора
АН1²=АС²-ВН1²
АН1²=100-36=64
АН1=8
Площадь ромба АВСD равна произведению высоты ВН на сторону ромба.
Высота известна, сторону ромба предстоит найти.
Рассмотрим треугольник DВН1
В нем катет СН1 =6
Пусть гипотенуза СD=х,
АD=DС=х
тогда катет DH1= АН1-АD=8-х, так как АН1=АD+DН1=8, как найдено выше.
h²=х²-(АН1-х)²
36=х²-(8-х)²
36=х²-(64-16х+х²)
36=х²- 64+16х-х²)
36=-64+16х
16х=100
х=6,25
AD=6,25
Sромба=АD*h=6,25·6=37,5 см²
Формула длины дуги сектора
т.е. длина окружности делится на ее градусную меру и умножается на величину угла сектора.
По условию •α=2π, откуда
Формула площади кругового сектора S=•α, т.е. площадь полного круга делится на его градусную меру и умножается на градусную меру сектора.
Подставим в формулу площади найденное из длины дуги значение R:
По условию π•360°/α=6π ⇒
α=60°⇒ R=360°:60°=6 см
Проведем биссектрису ОН угла сектора и к точке её пересечения с окружностью проведем касательную . Продлим стороны угла сектора до пересечения с касательной в т.А и В.
∆ АОВ - равносторонний с высотой ОН=R=6
Радиус вписанной в правильный треугольник окружности равен 1/3 его высоты.
r=6:3=2
C=2πr=4π