Уравнения диагоналей: AC (х+2)/(7+2)=(у+2)/(7+2), после преобразований получается у=х или х-у=0. BD (х+3)/(3+3)=(у-1)/(1-1). Вот что делает формальный подход. После преобразований получается: (х+3)/6=(у-1)/0. Ужас! деление на ноль! А всего лишь, нужно было внимательнее посмотреть и осмыслить значения. У точек B и D одинаковые ординаты. А это значит, что BD - горизонтальная линия, и ее уравнение у=1. Теперь нужно выяснить, какие же линии - основания, а какие - боковые стороны. Конечно, если мы начертим трапецию, то сразу видно, что AD параллельно ВС, значит что ADи ВС - основания. Но ведь нам нужно обойтись без чертежа. Значит придется составить уравнения АВ, ВС, CD и АD, и выбрать из них две с одинаковыми коэффициентами. Итак: (на всякий случай пока отправлю то, что есть, так как с минуты на минуту может прийти жена, и выгонит меня из-за компа). Продолжаю. Уравнения сторон: АВ (х+2)/(-3+2)=(у+2)/(1+2), 3х+6=-у-2, у=-3х-8; ВС (х+3)/(7+3)=(у-1)/(7-1), 6х+18=10у-10, у=0,6х+2,8; СD (DC) (х-3)/(7-3)=(у-1)/(7-1), 6х-18=4у-4, у=1,5х-3,5; AD х+2/(3+2)=(у+2)/(1+2), 3х+6=5у+10, у=0,6х-0,8. Видим, что одинаковые угловые коэффициенты (при х) у линий BC и AD. Значит это основания. Теперь главная фишка. Можно было бы тупо вычислить координаты точек на серединах сторон АВ и СD и написать уравнение линии, проходящей через эти точки. Но, поскольку средняя линия параллельна основаниям, то угловой коэффициент у нее одинаков с ними, т.е. 0,6. Так как она проходит посередине между ними, то свободный член уравнения равен среднему арифметическому свободных членов уравнений BD и АС, т.е (2,8-0,8)/2=1. Получаем уравнение средней линии у=0,6х+1.
Обозначим вершины оснований нижнего АВС, верхнего соответственно А1В1С1. Проведем высоты треугольников АD и A1D1.Проведем ось симметрии (ось вращения) пирамиды О1О. ОтметимРассечем пополам пирамиду вертикальной плоскостью, проходящей через соответствующие высоты оснований. В сечении получим неравнобочную трапецию. Более длинная боковая сторона - это боковое ребро пирамиды, и угол между нею и большим основанием трапеции равен 45° (это угол между боковым ребром и плоскостью основания пирамиды). Более короткая боковая сторона пирамиды - это апофема боковой грани пирамиды. Основания трапеции - это высоты оснований, и они равны соответственно 5*√(3)/2 и 7*√(3)/2
Поскольку боковая грань пирамиды это тоже трапеция (равнобочная, но это не имеет значения), то эта апофема является высотой трапеции.
AC (х+2)/(7+2)=(у+2)/(7+2), после преобразований получается у=х или х-у=0.
BD (х+3)/(3+3)=(у-1)/(1-1). Вот что делает формальный подход. После преобразований получается: (х+3)/6=(у-1)/0. Ужас! деление на ноль! А всего лишь, нужно было внимательнее посмотреть и осмыслить значения. У точек B и D одинаковые ординаты. А это значит, что BD - горизонтальная линия, и ее уравнение у=1.
Теперь нужно выяснить, какие же линии - основания, а какие - боковые стороны.
Конечно, если мы начертим трапецию, то сразу видно, что AD параллельно ВС, значит что ADи ВС - основания. Но ведь нам нужно обойтись без чертежа. Значит придется составить уравнения АВ, ВС, CD и АD, и выбрать из них две с одинаковыми коэффициентами.
Итак: (на всякий случай пока отправлю то, что есть, так как с минуты на минуту может прийти жена, и выгонит меня из-за компа).
Продолжаю.
Уравнения сторон:
АВ (х+2)/(-3+2)=(у+2)/(1+2), 3х+6=-у-2, у=-3х-8;
ВС (х+3)/(7+3)=(у-1)/(7-1), 6х+18=10у-10, у=0,6х+2,8;
СD (DC) (х-3)/(7-3)=(у-1)/(7-1), 6х-18=4у-4, у=1,5х-3,5;
AD х+2/(3+2)=(у+2)/(1+2), 3х+6=5у+10, у=0,6х-0,8.
Видим, что одинаковые угловые коэффициенты (при х) у линий BC и AD. Значит это основания.
Теперь главная фишка. Можно было бы тупо вычислить координаты точек на серединах сторон АВ и СD и написать уравнение линии, проходящей через эти точки.
Но, поскольку средняя линия параллельна основаниям, то угловой коэффициент у нее одинаков с ними, т.е. 0,6. Так как она проходит посередине между ними, то свободный член уравнения равен среднему арифметическому свободных членов уравнений BD и АС, т.е (2,8-0,8)/2=1. Получаем уравнение средней линии у=0,6х+1.
Поскольку боковая грань пирамиды это тоже трапеция (равнобочная, но это не имеет значения), то эта апофема является высотой трапеции.