1 Плоскости α и β пересекаются по прямой с,которой принадлежат точки А1 и В1 (концы проекций). АА1=5см,ВВ1=8см,А1В1=24см,АВ=25см АВ1=√(А1В1²+АА1²)=√(576+25)=√601 АВ=√(АВ²-АА1²)=√(625-25)=√600 Угол между плоскостями равен линейному углу АВ1В cosAB1B=(BB1²+AB1²-AB²)/(2BB1*AB1)=(64+601-625)/(2*8*√601)=0 <AB1B=90гр ответ угол между плоскостями равен 90градусов 2 Плоскости α и β пересекаются по прямой с. AC_|_c,AC=16см,AB_|_BC,AB=8см Угол между плоскостями равен линейному углу АСВ. Треугольник АВС прямоугольный,угол В равен 90 гр.Гипотенуза равна 16см,а катет ,лежащий напротив угла АСВ равен 8см.Следовательно угол АСВ равен 30гр ответ угол между плокостями равен 30градусов
Плоскости α и β пересекаются по прямой с,которой принадлежат точки А1 и В1 (концы проекций).
АА1=5см,ВВ1=8см,А1В1=24см,АВ=25см
АВ1=√(А1В1²+АА1²)=√(576+25)=√601
АВ=√(АВ²-АА1²)=√(625-25)=√600
Угол между плоскостями равен линейному углу АВ1В
cosAB1B=(BB1²+AB1²-AB²)/(2BB1*AB1)=(64+601-625)/(2*8*√601)=0
<AB1B=90гр
ответ угол между плоскостями равен 90градусов
2
Плоскости α и β пересекаются по прямой с. AC_|_c,AC=16см,AB_|_BC,AB=8см
Угол между плоскостями равен линейному углу АСВ.
Треугольник АВС прямоугольный,угол В равен 90 гр.Гипотенуза равна 16см,а катет ,лежащий напротив угла АСВ равен 8см.Следовательно угол АСВ равен 30гр
ответ угол между плокостями равен 30градусов
Строим сечение. Соединяем точку В с точкой К (серединой SC)
Проводим КМ || AB, Соединяем точку М с точкой А
Сечение ВКМА- трапеция.
КМ- средняя линия треугольника SCD и КМ=1/2 CD=1/2
В треугольнике BSC SK- медиана, но так как треугольник равносторонний, то и высота. По теореме Пифагора BK²=BC²-KC²=1-(1/2)²=3/4.
BK=√3/2.
Находим площадь равнобедренной трапеции : МК=1/2, АВ=1, ВК=МА=√3/2 ( см рисунок 2)
Проводим высоты КН и МР. ВН=РА=1/4
По теореме Пифагора
КН²=ВК²-ВН²=(√3/2)²-(1/4)²=3/4-1/16=12/16-1/16=11/16
КН=√11/4
S(сечения)=(АВ+КМ)КН/2=1/2 ·(1+1/2)√11/4=3√11/16
Объяснение: