Через точку C, которая лежит вне параллельных плоскостей α и β, проведены прямые a и b, которые пересекают плоскость α в точках A и A1, а плоскость β — в точках B и B1 соответственно. Найдите AA1, если: AC = 2, AB = 6, BB1 = 10. С рисунком и подробно !
РА=10 см, РО=8 см, <POA=90°
ΔPOA. по теореме Пифагора: AO²=PA²-PO²
AO²=10²-8², AO²=36, AO =6 см.
ΔADC: AC=2AO, AC=12 см, AD=DC=a
по теореме Пифагора: AO²=AD²+CD²
12²=a²+a², 144=2a², a²=72, a=√72, a=6√2 см
ответ: сторона основания АВ=6√2 см
2. Sбок.пов. =(1/2)Pосн*h
h - апофему боковой грани правильной пирамиды найдем по теореме Пифагора из ΔАКР: PK_|_AB, AK=(1/2)AB, AK=3√2 см
PA²=AK²+PK², 10²=(3√2)²+PK², PK²=100-18, PK²=82, PK=√82 см
S=(1/2)*4*6√2*√82=12√164=12√(4*41)=24√41
S бок.=24√41 см²
Пусть дан четырёхугольник АВСD. Точка К - середина АВ, т.М - середина ВС, N и Т - середины СD и DA соответсвенно. По условию КN=ТМ. Проведем диагонали АС и ВD. Соединим середины сторон треугольников АВС, ВСD, CDA и DAB. В треугольниках АВС и АDC средние линии параллельны и равны половине диагонали АС исходного четырехугольника.⇒ КМ параллельна и равна ТN. Аналогично доказывается КТ=МN. Противоположные стороны КМNТ параллельны и равны. КМNТ - параллелограмм с равными диагоналями ( КN=МТ по условию), т.е. КМNТ - прямоугольник. А раз стороны КМNТ пересекаются под прямым углом, то и диагонали четырехугольника АВСD, которым они параллельны, также пересекаются под прямым углом, ч.т.д.