Через точку m к окружности с центром o провели касательные maи mb, (a и b - точки касания).найдите растояние от точки m до точки касания,если растояние межу касанием = m и углуaob=а
А) ∠АMN=90 °; ∠ACN= 90 °. Сумма противоположных углов четырехугольника СNMA равна 180 °, значит около четырехугольника CNMA можно описать окружность. ∠СMN=∠CAN как вписанные углы, опирающиеся на одну и ту же дугу NC. б) Так как точка М– середина гипотенузы является центром окружности, описанной около треугольника АВС, то ВM=AM=CM
Треугольник CMB – равнобедренный, так как СM=BM.
Треугольник ANB – равнобедренный, так как NM – серединный перпендикуляр к АВ, поэтому BN=AN.
Угол В в этих треугольниках общий.
По теореме синусов из треугольника АNB BN/sin∠B=2R1, R1– радиус окружности, описанной около треугольника ANB. По теореме синусов из треугольника СМВ: СM/sin ∠B=2R2 R2– радиус окружности, описанной около треугольника СМВ
1) По формуле "расстояние между 2-мя точками" найдем длины сторон АВ и СД: IАВI=sqrt((0+6)^2+(5-1)^2)=sqrt(36+16)=sqrt(52)=2*sqrt(13); ICDI=sqrt((6-0)^2+(-4+8)^2)=sqrt(36+16)=sqrt(52)=2*sqrt(13); 2) IBCI=sqrt((0-6)^2+(5+4)^2)=sqrt(36+81)=sqrt(117)=3*sqrt(13); IADI=sqrt((-6-0)^2+(1+8)^2)=sqrt(36+81)=sqrt(117)=3*sqrt(13); 3) так как противоположные стороны 4-хугольника равны, то это параллелограмм. 4) IACI=sqrt((6+6)^2+(-4-1)^2)=sqrt(144+25)=sqrt(169)=13; IBDI=sqrt((0-0)^2+(5+8)^2)=sqrt(169)=13; 5) параллелограмм с равными диагоналями - параллелограмм; 6) пусть точка пересечения диагоналей - точка О(х;у) - середина диагонали АС. По формулам координат середины отрезка О((6-6)/2;(-4+1)/2), т.е. О(0;-1,5).
∠АMN=90 °; ∠ACN= 90 °.
Сумма противоположных углов четырехугольника СNMA равна 180 °, значит около четырехугольника CNMA можно описать окружность.
∠СMN=∠CAN как вписанные углы, опирающиеся на одну и ту же дугу NC.
б)
Так как точка М– середина гипотенузы является центром окружности, описанной около треугольника АВС, то
ВM=AM=CM
Треугольник CMB – равнобедренный, так как СM=BM.
Треугольник ANB – равнобедренный, так как NM – серединный перпендикуляр к АВ, поэтому BN=AN.
Угол В в этих треугольниках общий.
По теореме синусов из треугольника АNB
BN/sin∠B=2R1, R1– радиус окружности, описанной около треугольника ANB.
По теореме синусов из треугольника СМВ:
СM/sin ∠B=2R2
R2– радиус окружности, описанной около треугольника СМВ
Значит
R1/R2=BN/CM, так как СМ=ВМ.
R1/R2=BN/BM
Рассмотрим прямоугольный треугольник ВNM:
cos∠B=BM/BN
R1/R2=1/cos∠B
По условию
tg∠A=4/3 ⇒ 1+tg2∠A=1/cos2∠A
значит
cos2∠A=1/(1+tg2∠A)=1/(1+(4/3)2)=9/25
так как угол А –острый, то cos∠A=3/5
sin∠A=4/5
sin∠A=cos∠B
R1/R2=1/cos∠B=1/(4/5)=5/4
О т в е т. 5/4
IАВI=sqrt((0+6)^2+(5-1)^2)=sqrt(36+16)=sqrt(52)=2*sqrt(13);
ICDI=sqrt((6-0)^2+(-4+8)^2)=sqrt(36+16)=sqrt(52)=2*sqrt(13);
2) IBCI=sqrt((0-6)^2+(5+4)^2)=sqrt(36+81)=sqrt(117)=3*sqrt(13);
IADI=sqrt((-6-0)^2+(1+8)^2)=sqrt(36+81)=sqrt(117)=3*sqrt(13);
3) так как противоположные стороны 4-хугольника равны, то это параллелограмм.
4) IACI=sqrt((6+6)^2+(-4-1)^2)=sqrt(144+25)=sqrt(169)=13;
IBDI=sqrt((0-0)^2+(5+8)^2)=sqrt(169)=13;
5) параллелограмм с равными диагоналями - параллелограмм;
6) пусть точка пересечения диагоналей - точка О(х;у) - середина диагонали АС. По формулам координат середины отрезка О((6-6)/2;(-4+1)/2), т.е. О(0;-1,5).