Через точку М проведены две прямые, пересекающие параллельные плоскости α и β в точках А1, В1 и А2, В2 соответственно. Точка А1 делит отрезок МВ1 в отношении 2:3, считая от точки М. Найдите длину отрезка А1А2, если В1В2 =15 см.
Немного переиначу - пусть D лежит на AB, DE II AC, CD и AE пересекаются в точке N. Я буду доказывать, что BN - медиана ABC. Нужно обозначить еще две точки - M - точка пересечения продолжения BN и AC, K - точка пересечения BN и DE. Треугольники DKN и MNC подобны, то есть MN/NK = CM/DK; точно также из подобия треугольников EKN и ANM получается MN/NK = AM/KE; если обозначить MN/NK = x; то CM = DK*x; AM = KE*x; то есть CM/AM = DK/KE; (1) Далее, поскольку DE II AB, то треугольники DKB и AMB подобны, и DK/AM = BK/BM; точно так же из подобия треугольников BKE и BMC следует KE/CM = BK/BM; если обозначить BK/BM = y; то DK = AM*y; KE = CM*y; то есть CM/AM = KE/DK; (2) Если перемножить равенства (1) и (2), получится (CM/AM)^2 = 1; то есть CM = AM; Вот так решается
Дано:ABCD - ромб.AB = 5 см.BD = 6 см.OK ⊥ ABCD.Найти KA, KB, KC, KD. Решение:О - точка пересечения диагоналей. Значит AO = CO, BO = DO = 3 см.Рассмотрим треугольники BOK и DOK. Они оба прямоугольные, т.к. OK - перпендикуляр. Сторона OK общая, BO = DO. Значит, эти треугольники равны и KB = KD. Из треугольника BOK по т. Пифагора KB = √(64+9) = √(73) см. Найдём диагональ AC. Сумма квадратов диагоналей ромба равна квадрату стороны, умноженному на 4.AC^2+BD^2 = 4*AB^2AC^2 +36 = 4*25AC^2 = 64AC = 8 см.Тогда AO =CO = 4 см.Треугольники AKO и CKO равны, т.к. прямоугольные, KO - общая сторона, AO = CO. Из треугольника CKO по т. ПифагораKC = √(64+16) = √(80) см.
Треугольники DKN и MNC подобны, то есть MN/NK = CM/DK; точно также из подобия треугольников EKN и ANM получается MN/NK = AM/KE; если обозначить
MN/NK = x; то CM = DK*x; AM = KE*x;
то есть CM/AM = DK/KE; (1)
Далее, поскольку DE II AB, то треугольники DKB и AMB подобны, и DK/AM = BK/BM; точно так же из подобия треугольников BKE и BMC следует KE/CM = BK/BM; если обозначить BK/BM = y; то DK = AM*y; KE = CM*y;
то есть CM/AM = KE/DK; (2)
Если перемножить равенства (1) и (2), получится (CM/AM)^2 = 1; то есть CM = AM; Вот так решается
Решение:О - точка пересечения диагоналей. Значит AO = CO, BO = DO = 3 см.Рассмотрим треугольники BOK и DOK. Они оба прямоугольные, т.к. OK - перпендикуляр. Сторона OK общая, BO = DO. Значит, эти треугольники равны и KB = KD. Из треугольника BOK по т. Пифагора KB = √(64+9) = √(73) см.
Найдём диагональ AC. Сумма квадратов диагоналей ромба равна квадрату стороны, умноженному на 4.AC^2+BD^2 = 4*AB^2AC^2 +36 = 4*25AC^2 = 64AC = 8 см.Тогда AO =CO = 4 см.Треугольники AKO и CKO равны, т.к. прямоугольные, KO - общая сторона, AO = CO. Из треугольника CKO по т. ПифагораKC = √(64+16) = √(80) см.