Через вершину а треугольника авс проведена плоскость а,параллельная вс. расстояние от вс до плоскости а равно 12. найдите расстояние от точки пересечения медиан треугольника авс до этой плоскости.
Прямая BC параллельна плоскости α⇒расстояние от любой точки BC до α равно расстоянию от BC до α, то есть 12. В частности, если взять середину D отрезка BC. то расстояние от D до α равно 12. Опустим перпендикуляр DE на плоскость α, тогда AE будет проекцией медианы AD на α. Пусть G - точка пересечения медиан треугольника ABC (⇒ AG:GD=2:1⇒AG:AD=2:3), GF - перпендикуляр на плоскость α. Поскольку DE лежит в плоскости ADE и GF параллельно DE, GF также лежит в плоскости ADE и тем самым F лежит на AE. Очевидно, ΔAGF подобен ΔADE с коэффициентом подобия AG:AD=2:3⇒GF:ED=2:3⇒ GF=12·2/3=8.
ответ: 8
Замечание. Интуитивно ответ был очевиден с самого начала. Точка D находится на расстоянии 12 от плоскости, A лежит в плоскости. Двигаясь по прямой от D по направлению к A, мы оказываемся в точке пересечения медиан, пройдя треть пути до A. Соответственно на треть к плоскости мы и приблизимся. Треть от 12 - это 4, 12-4=8 - ответ в задаче.
GF=12·2/3=8.
ответ: 8
Замечание. Интуитивно ответ был очевиден с самого начала. Точка D находится на расстоянии 12 от плоскости, A лежит в плоскости. Двигаясь по прямой от D по направлению к A, мы оказываемся в точке пересечения медиан, пройдя треть пути до A. Соответственно на треть к плоскости мы и приблизимся. Треть от 12 - это 4, 12-4=8 - ответ в задаче.