Через вершину гострого кута С прямокутного трикутника АВС (кутA = 90°) до площини трикутника проведено перпендикулярну
пряму, на якій позначено точку D. Які з наведених трикутників
є прямокутними?
А. Тільки ADAB. Б. ADCA i ADCB.
В. Тільки ДДСВ. Г. ДDCA, ADCB, ADAB.
(Отметим, что в условии опечатка и N=M - середина АС)
В правильном тетраэдре все грани - правильные треугольники.
М середина АС, ⇒,SM- медиана и высота треугольника ASC,
а ВМ - медиана и высота треугольника АВС.
В равных треугольниках высоты равны.
SM=BM=AB•sin60º= (4√3):2 =2√3⇒
Треугольник SMB- равнобедренный.
О- центр основания⇒т.О – центр вписанной в правильный треугольник окружности и лежит в точке пересечения биссектрис ( для правильного треугольника они же - медианы и высоты).
Тогда МО=МВ:3 ( свойство медианы)=(2√3):3 = 2:√3
По т. Пифагора SO=√(SM² - MO²) = (4√2):√3
Тогда РО=SO:4= √2:√3
Из ∆ МРО по т.Пифагора MP=√(PO² +MO²)=√(2/3+4/3)=√2
sin∠ PMO= PO:MP= (√2 : √2): √3 = 1/√3
Тогда НВ:МВ=1/√3, откуда НВ=2√3•1/√3=2
НВ - половина SB, поэтому МН - медиана ∆ SMB, а т.к. этот треугольник равнобедренный, то МН - его высота и перпендикулярна SB.
Точка Р принадлежит МН, и прямая МР перпендикулярна SB. ч.т.д.
Значит стороны треугольника О1О2О3 равны:5,6 и 7.
Тогда площадь этого треугольника по Герону равна:
S=√[p*(p-a)(p-b)(p-c)], где р - полупериметр, а,b,с - стороны треугольника.
р=(5+6+7)/2=9. S=√(9*4*3*2)=6√6.
Заметим, что окружность, описанная вокруг треугольника АВС - это вписанная в треугольник О1О2О3 окружность, так как точки А, В и С окружности принадлежат сторонам О1О2,О2О3 и О3О1 соответственно.
Докажем это. Есть формула нахождения длины отрезка от вершины треугольника до точки касания с вписанной окружностью: расстояние от вершины С треугольника до точки, в которой вписанная окружность касается стороны, равно d=(a+b-c)/2 или d=р-с, где р - полупериметр, с - сторона, противоположная углу треугольника.
В нашем случае: О1А=9-7=2, О2А=9-6=3, О3В=9-5=4, следовательно, точки касания вписанной в треугольник АВС окружности совпадают с точками А, В и С касания данных нам окружностей.
Радиус вписанной в треугольник окружности равен r=S/p или в нашем случае
r=6√6/9=2√6/3.
ответ: r=2√6/3.