Объяснение:ответ на первый вопрос кроется в условии) , это прямые призмы, две четырехугольные, и первая треугольная.
1. В основании лежит прямоугольный треугольник, катеты которого 5 и 12, а гипотенуза √(25+144)=13, площадь полной поверхности равна сумме площадей двух оснований и боковой поверхности.
2*5*12/2+(5+12+13)*6=60+180=240-площадь полной поверхности, а боковой 180
2. 2*16*6+(32+12)*19=192+836=1028- площадь полной поверхности, а боковой 836
3. 2*40*80+(80+160)*60=6400+14400=20800- полная поверхность, а площадь боковой 14400
Рассмотрим прямоугольный треугольник АВС. Пусть длина катета АС = 12 * х сантиметров, а длина катета ВС = 5 * х сантиметров. Тогда по теореме Пифагора (квадрат гипотенузы равен сумме квадратов катетов):
Объяснение:ответ на первый вопрос кроется в условии) , это прямые призмы, две четырехугольные, и первая треугольная.
1. В основании лежит прямоугольный треугольник, катеты которого 5 и 12, а гипотенуза √(25+144)=13, площадь полной поверхности равна сумме площадей двух оснований и боковой поверхности.
2*5*12/2+(5+12+13)*6=60+180=240-площадь полной поверхности, а боковой 180
2. 2*16*6+(32+12)*19=192+836=1028- площадь полной поверхности, а боковой 836
3. 2*40*80+(80+160)*60=6400+14400=20800- полная поверхность, а площадь боковой 14400
205: Дано:
прямоугольный треугольник АВС,
угол С = 90 градусов,
АС : ВС = 12 : 5,
АВ = 39 сантиметров.
Найти катеты АС, ВС — ?
Рассмотрим прямоугольный треугольник АВС. Пусть длина катета АС = 12 * х сантиметров, а длина катета ВС = 5 * х сантиметров. Тогда по теореме Пифагора (квадрат гипотенузы равен сумме квадратов катетов):
АС^2 + ВС^2 = АВ^2:
(12х)^2 + (5х)^2 = 39^2;
144х^2 + 25 х^2 =1 521;
169х^2 = 1 521;
х^2 = 1 521 : 169;
х^2 = 9;
х = 3;
12 * 3 = 36 сантиметров — длина катета АС;
5 * 3 = 15 сантиметров — длина катета ВС.
ответ: 36 сантиметров; 15 сантиметров.
206: пусть х - первый катет, а y - второй:
y^2-17y+60=0
D=289-240=
y1=12
y2=5
найдем x:
x=17-y
x-17-12 x=17-5
х = 5 x=12
ответ: (5;12), (12;5)
Подробнее - на -