Площадь боковой проверхности призмы равна произведению ее высоты на периметр основания. Для ответа на вопрос задачи нужно знать высоту призмы. Найдем по т. косинусов диагональ основания АС. Сумма углов при одной стороне параллелограмма равна 180° Следовательно, угол АВС=180°-30°=150° Пусть АВ=4см ВС=4√3 см АС²=АВ²+ ВС² -2*АВ*ВС* cos (150°) косинус тупого угла - число отрицательное. АС²=16+48+32√3*(√3):2=112 АС=√112=4√7 Высота призмы СС1=АС: ctg(60°)=(4√7):1/√3 CC1=4√21 Площадь боковой поверхности данной призмы S=H*P=4√21*2(4+4√3)=32√21*(1+√3) см²
РЕШЕНИЕ
сделаем построение по условию
AB = BC , так как ABCD -квадрат
Точка M делит сторону BC в отношении 1:2 -можно считать ,
что сторона ВС состоит из 3-х равных частей.
Точка E делит сторону AB в отношении 1:3 - можно считать ,
что сторона АВ состоит из 4-х равных частей.
Прямая CE пересекает стороны AM и MD треугольника AMD в точках К и L соответственно.
Дополнительное построение :
обозначим точку М1 - середина отрезка MC , тогда BM=MM1=M1C
проведем через точки М, М1 прямые m, m1 параллельные прямой CE
по теореме Фалеса :
параллельные прямые m,m1,CE отсекают на сторонах угла <EBC
пропорциональные отрезки
на стороне ВС : BM=MM1=M1C , значит на стороне BE тоже три равные части
обозначим для так как сторона АВ состоит из 4-х равных частей, то любая часть может быть
представлена в виде 3х , тогда BE=3x, тогда ЕА=9х, тогда отношение 1 : 3 = 3х : 9х = 3 : 9
рассмотрим угол <BAM
снова теорема Фалеса, снова параллельные прямые m,m1,CE , снова
пропорциональные отрезки на сторонах угла
MK : KA = 2x : 9x = 2 : 9 <это сторона АМ треугольника AMD
Дополнительное построение :
проведем прямую DM до пересечения с прямой АВ - точка Р
проведем прямую DN параллельную прямой CE
прямая DN отсекает на прямой АВ отрезок AN
CE || DN , EN || CD
NECD - параллелограмм , так как противоположные стороны попарно параллельны
следовательно BE=AN , тогда BE : EN = 1 : 4
т. е. отрезок BN состоит из 5-и равных частей.
тогда BE=3x, тогда ЕN=12х, тогда отношение 1 : 4 = 3х : 12х = 3 : 12
рассмотрим угол <NPD
снова теорема Фалеса, снова параллельные прямые m,m1,CE,DN , снова
пропорциональные отрезки на сторонах угла
ML : LD = 2x : 12x = 2 : 12 = 1 : 6 <это сторона МD треугольника AMD
ОТВЕТ
для стороны АМ отношение 2 : 9
для стороны МD отношение 1 : 6
Подробнее - на -
Объяснение:
Для ответа на вопрос задачи нужно знать высоту призмы. Найдем по т. косинусов диагональ основания АС.
Сумма углов при одной стороне параллелограмма равна 180°
Следовательно, угол АВС=180°-30°=150°
Пусть АВ=4см
ВС=4√3 см
АС²=АВ²+ ВС² -2*АВ*ВС* cos (150°)
косинус тупого угла - число отрицательное.
АС²=16+48+32√3*(√3):2=112
АС=√112=4√7
Высота призмы
СС1=АС: ctg(60°)=(4√7):1/√3
CC1=4√21
Площадь боковой поверхности данной призмы
S=H*P=4√21*2(4+4√3)=32√21*(1+√3) см²