Cечение, проходящее через вершины А,С и D1 призмы пройдет и через вершину F1, так как плоскость, пересекающая две параллельные плоскости (плоскости оснований), пересекает их по параллельным прямым, то есть по прямым АС и D1F1. В сечении имеем прямоугольник со сторонами АС и СD1 (так как грани АА1F1F и CC1D1D параллельны между собой и перпендикулярны плоскостям оснований и, следовательно, углы сечения равны 90⁰). Причем отрезок СD1 (гипотенуза прямоугольного треугольника) по Пифагору равна 2√2. Половину стороны АС найдем из прямоугольного треугольника АВН, в котором <ABH=60°, а <BAH=30° (так как <АВС - внутренний угол правильного шестиугольника и равен 120°). 0,5*АС=√(4-1)=√3. АС=2√3. Площадь сечения равна 2√2*2√3=4√6. ответ: S=4√6.
0,5*АС=√(4-1)=√3. АС=2√3.
Площадь сечения равна 2√2*2√3=4√6.
ответ: S=4√6.
2) sina cos²a + sin³a= \выносим общий множитель sina за скобки\ =
= sina (cos²a + sin²a)=\основное тригонометрическое тождество sin²a + cos²a=1\= sina
3) (1 - sina) (1 + sina) = \формулы сокращенного умножения\ = 1- sin²a = cos²a
4) (1 + ctg²a) * sin²a+1=sin²a+cos²a+1=2
5) (tga * ctga - cos²a)* 1/sin²a= 1/sin²a - ctg²a
6) tga * ctga + sina = 1 + sina
Докажите тождество:
(2tg²a * cos²a + 2cos²a)* sina + 3sina = 5sina
(2tg²a * cos²a + 2cos²a)* sina + 3sina =(2sin²a + 2cos²a)* sina + 3sina= 2(sin²a + cos²a)* sina + 3sina=2sina + 3sina= 5sina ч.т.д.