Цилиндрдің осьне параллель жазықтықтан 15 – ке тең қашықтықта. Пайда болған қиманың диагоналы 20, ал цилиндрдің табанының радиусы 17 – ге тең. Цилиндрдің көлемін табыңдар.
Точка равноудалённая от катетов образует внутри прямоугольного треугольника квадрат со стороной а, вершины которого - вершина прямого угла, точка на гипотенузе и две точки на катетах, от которых равноудалена заданная. Внутри прямоугольного образовались квадрат и два подобные между собой прямоугольных треугольника, которые подобны исходному треугольнику . пусть Один из катетов прямоугольного треугольника(1) - х и гипотенузой - 40 см, тогда соответствующий катет прямоугольного треугольника(2) - а см и гипотенузой - 30 см. Составим систему уравнений: Тогда один катет исходного прямоугольного треугольника - х+а=56 см. Второй катет по теореме Пифагора: = 1764, второй катет равен
АН перпендикулярен линии пересечения взаимно перпендикулярных плоскостей, следовательно, АН перпендикулярен любой прямой, лежащей в плоскости b и проходящей через Н.
Тогда один катет исходного прямоугольного треугольника - х+а=56 см. Второй катет по теореме Пифагора: = 1764, второй катет равен
Пусть данные плоскости а и b.
А ∈ а, В ∈ b.
АН⊥СН, ВС⊥СН
ВН - проекция АВ на плоскость b,
АС - проекция АВ на плоскость а.
∆ АСН - прямоугольный, ∠АНС=90°
По т.Пифагора АН²=АС²-СН²=256-144=112
АН перпендикулярен линии пересечения взаимно перпендикулярных плоскостей, следовательно, АН перпендикулярен любой прямой, лежащей в плоскости b и проходящей через Н.
∆ АНВ - прямоугольный. ∠АНВ=90°
По т.Пифагора АВ²=АН²+ВН²=512
АВ=√512=16√2
Или:
∆ СНВ - прямоугольный, ∠ВСН=90° ⇒
По т.Пифагора СВ²=ВН²-СН²=400-144=256
ВС=√256=16
∆ АСВ- прямоугольный. ∠АСВ=90°
По т.Пифагора АВ² = АС² +ВС² =256+256=512⇒
АВ=√512=16√2