Углы при основании у равнобедренной трапеции равны, значит второй угол тоже 60°.
Так как при диагонали угол 30°, то 60-30=30°
Сумма всех углов 360°
360°-60°-60°=240°
240°:2=120° (остальные два угла
рассмотрим верхний треугольник с меньшим основанием. 180°-120°-30°=30°, следовательно два угла одинаковые. Это равнобедренный треугольник.
Если боковая сторона 4 см, то и меньшее основание тоже 4 см.
Рассмотрим треугольник, который образует диагональ, с нижним основанием трапеции. 180°-60°-30°=90°. Значит он прямоугольный, в котором боковая сторона 4 см - катет, лежащий против угла 30° и равен половине гипотенузы.
Большее основание трапеции является гипотенузой этого треугольника.
60°; 120°
Р(АВСD)=16 ед
Объяснение:
Рассмотрим треугольник ∆ВDP
BD=4 ед гипотенуза
PD=2 ед катет
Катет в два раза меньше гипотенузы, когда катет против угла 30°
<РВD=30°
Сумма острых углов в прямоугольном треугольнике равна 90°
<РDB=90°-<PBD=90°-30°=60°
Диагональ ромба является биссектриссой его углов.
ВD- биссектрисса угла <АDC
<ADC=2*<PDB=2*60°=120°
Сумма углов прилежащих к одной стороне ромба равна 180°
<ВАD=180°-<ADC=180°-120°=60°
В ромбе с углами 60°; 120°, меньшая диагональ равна стороне ромба.
ВD=AB=4ед
P(ABCD)=4*AB=4*4=16 ед.
Углы при основании у равнобедренной трапеции равны, значит второй угол тоже 60°.
Так как при диагонали угол 30°, то 60-30=30°
Сумма всех углов 360°
360°-60°-60°=240°
240°:2=120° (остальные два угла
рассмотрим верхний треугольник с меньшим основанием. 180°-120°-30°=30°, следовательно два угла одинаковые. Это равнобедренный треугольник.
Если боковая сторона 4 см, то и меньшее основание тоже 4 см.
Рассмотрим треугольник, который образует диагональ, с нижним основанием трапеции. 180°-60°-30°=90°. Значит он прямоугольный, в котором боковая сторона 4 см - катет, лежащий против угла 30° и равен половине гипотенузы.
Большее основание трапеции является гипотенузой этого треугольника.
Большее основание равно 4*2=8 см
ответ: основания трапеции 4 см и 8 см.