Дәптерлеріңе радиусы 4 см шеңбер сызыңдар. Осы шеңберден А және В нүктелерін табуға бола ма? Егер а) АВ=3 см; ә) АВ=4 см; б) АВ=6 см; в) АВ=8 см болса, осы нүктелерді белгілеңіз.
• 3. Теперь, мы узнаём сторону квадрата. Это записывается так:
3)900 : 4 = 225 ( м ) – сторона квадрата
• 4. А теперь, мы можем узнать площадь квадрата, и потом в пятом действии записать и сравнить, чья площадь больше – квадрата или прямоугольника. Но смотря, какая у вас программа : если у вас программа Л.Г. Петерсона, то записывать нужно, но, а если у вас программа Рудницкой или Моро и др., то не нужно. Это записывается так:
4)225 ˣ 225 = 50 625 ( м² )
• 5. А вот когда мы узнали площадь квадрата и прямоугольника, то мы можем сравнить, чья площадь больше. Это записывается так:
5)50 625 > 32 400
• или...
5)32 400 < 50 625
• 6. А вот на сколько площадь квадрата больше площади прямоугольника мы не знаем. Но мы можем решить! Для этого нам нужно:
6)50 625 – 32 400 = 18 225 ( м )
— | Мы узнали то, что площадь квадрата больше площади прямоугольника. И на сколько. Мы можем записать ответы. ответы, потому что у нас в данной задаче два во ответ: Площадь участка квадратной формы больше площади участка прямоугольной формы; на 18 225 м площадь участка квадратной формы больше площади участка прямоугольной формы.
d диаметр основания конуса l образующая конуса h высота конуса d = l = 2 => осевое сечения конуса - правильный треугольник со сторонами = d 1) Площадь осевого сечения конуса s: s = h*d h = d² - (d/2)² = d² - d²/4 = 3d²/4 = 3 s = h*d = 3*2 = 6 > 1,5 ответ: не может быть = 1,5 2) сечение, параллельное основанию, площадь которого равна 1 площадь сечения, параллельное основанию = от 0 до площади основания площадь основания s: s = πr² = πd²/4 = π*2²/4 = π 1∈]0;π[ ответ: может = 1 3) Наибольшая площадь треугольного сечения s: s = 6 > 2 ответ: наибольшая площадь треугольного сечения не равна 2 4) сечения конуса площадь осевого сечения = 6 площадь основания = π ответ: не существует сечение, площадь которого = 18 5) Расстояние от центра основания конуса до образующей = (d/2)*sin60 = (2/2)√3/2 = √3/2 ответ: расстояние от центра основания конуса до образующей = √3/2 6) расстояние от вершины конуса до основания это высота h = 3 ответ: не равно 2
` ` — Здравствуйте, Levva007! ` `
• Объяснение:
— | Прежде чем нам решить данную задачу, сначала нужно отметить в ней главные слова: | —
• Первый участок имеет форму прямоугольника со сторонами 360 м и 90 м, второй участок имеет форму квадрата.
— | Отметили. Теперь, когда мы знаем главные слова в данной задаче, мы можем начать её решать. | —
• Решение:
• 1. Сначала, мы с вами должны узнать площадь прямоугольника. Это записывается так:
1)360 ˣ 90 = 32 400 ( м² ) – площадь прямоугольника.
• 2. Теперь, мы можем узнать периметр прямоугольника. Это записывается так:
2)360 ˣ 2 + 90 ˣ 2 = 900 ( м ) – периметр прямоугольника
• 3. Теперь, мы узнаём сторону квадрата. Это записывается так:
3)900 : 4 = 225 ( м ) – сторона квадрата
• 4. А теперь, мы можем узнать площадь квадрата, и потом в пятом действии записать и сравнить, чья площадь больше – квадрата или прямоугольника. Но смотря, какая у вас программа : если у вас программа Л.Г. Петерсона, то записывать нужно, но, а если у вас программа Рудницкой или Моро и др., то не нужно. Это записывается так:
4)225 ˣ 225 = 50 625 ( м² )
• 5. А вот когда мы узнали площадь квадрата и прямоугольника, то мы можем сравнить, чья площадь больше. Это записывается так:
5)50 625 > 32 400
• или...
5)32 400 < 50 625
• 6. А вот на сколько площадь квадрата больше площади прямоугольника мы не знаем. Но мы можем решить! Для этого нам нужно:
6)50 625 – 32 400 = 18 225 ( м )
— | Мы узнали то, что площадь квадрата больше площади прямоугольника. И на сколько. Мы можем записать ответы. ответы, потому что у нас в данной задаче два во ответ: Площадь участка квадратной формы больше площади участка прямоугольной формы; на 18 225 м площадь участка квадратной формы больше площади участка прямоугольной формы.
` ` — С уважением, EvaTheQueen! ` `
l образующая конуса
h высота конуса
d = l = 2 => осевое сечения конуса - правильный треугольник
со сторонами = d
1) Площадь осевого сечения конуса s:
s = h*d
h = d² - (d/2)² = d² - d²/4 = 3d²/4 = 3
s = h*d = 3*2 = 6 > 1,5
ответ: не может быть = 1,5
2) сечение, параллельное основанию, площадь которого равна 1
площадь сечения, параллельное основанию = от 0 до площади основания
площадь основания s:
s = πr² = πd²/4 = π*2²/4 = π
1∈]0;π[
ответ: может = 1
3) Наибольшая площадь треугольного сечения s:
s = 6 > 2
ответ: наибольшая площадь треугольного сечения не равна 2
4) сечения конуса
площадь осевого сечения = 6
площадь основания = π
ответ: не существует сечение, площадь которого = 18
5) Расстояние от центра основания конуса до образующей
= (d/2)*sin60 = (2/2)√3/2 = √3/2
ответ: расстояние от центра основания конуса до образующей = √3/2
6) расстояние от вершины конуса до основания
это высота h = 3
ответ: не равно 2