1. б) может быть верно - свойство медианы равнобедренного треугольника, проведённой к основанию, а про медианы, проведённые к боковым сторонам, ничего подобного не говорится.
2. б) все его углы равны и в) любая высота является биссектрисой и медианой. б - свойство углов равностороннего треугольника, в - про это я пишу в 4 пункте
3. б) в равнобедренном. В любом точно нет. В равностороннем таких высот несколько, а спрашивается про одну
4. а) всегда верно - так как треугольник равносторонний, то у него стороны являются и основаниями и боковыми сторонами одновременно, если выделять здесь равнобедренные треугольники, поэтому свойство медианы равнобедренного треугольника распространяется на все медианы, биссектрисы и высоты.
5. в) ответы а и б неверны. ответ а неверен, так как основание равнобедренного треугольника не всегда равно боковым сторонам. ответ б неверен, так как медианой, биссектрисой и высотой является только медиана, ПРОВЕДЁННАЯ К ОСНОВАНИЮ (опять же таки повторяю про это свойство)
6. в) в равностороннем. Рассмотрим треугольник ABC, который не является ни равносторонним, ни равнобедренным и проведём в нём высоту. Высота AH не поделила т. ABC на равные треугольники ABH и ACH. Рассмотрим другой треугольник DEF, который является равнобедренным. В нём боковые стороны DE и FE. Высота EH делит треугольник на 2 равных. Они равны по 1, 2 и 3 признакам равенства треугольников (здесь можно доказать 1 из них, без разницы), так как EH является также медианой и биссектрисой, а FE=DE. А теперь проведём высоту FG. Она не поделила треугольник DEF на равные, так как высота проведена к боковой стороне, а не к основанию. Следовательно, вариант в верный.
P.S. учите геометрию и учитесь внимательно читать какие бы то ни было геометрические свойства, признаки, определения, теоремы и т.д. и т.п. и всё получится(:
1) В правильном шестиугольнике все стороны равны.
P₆ = 6a₆,
где а₆ - сторона шестиугольника.
6а₆ = 48
а₆ = 8 м
Радиус окружности, описанной около правильного шестиугольника, равен его стороне:
R = a₆ = 6 м
Эта же окружность описана около квадрата.
Радиус окружности, описанной около квадрата:
R = a₄√2 / 2
6 = a₄ √2 / 2
a₄ = 12 / √2 = 6√2 м
2) Шестиугольник диагоналями делится на 6 равных равносторонних треугольников, так как центральный угол его равен 360°/6 = 60°.
Площадь одного треугольника:
S = a²√3/4 = 72√3 / 6
a²√3/4 = 12√3
a² = 48
a = 4√3 см - сторона шестиугольника.
Радиус окружности, описанной около правильного шестиугольника, равен его стороне:
R = a = 4√3 см
Длина окружности:
C = 2πR = 2π · 4√3 = 8π√3 см
1. б
2. б и в
3. б
4. а
5. в
6. в
Объяснение:
1. б) может быть верно - свойство медианы равнобедренного треугольника, проведённой к основанию, а про медианы, проведённые к боковым сторонам, ничего подобного не говорится.
2. б) все его углы равны и в) любая высота является биссектрисой и медианой. б - свойство углов равностороннего треугольника, в - про это я пишу в 4 пункте
3. б) в равнобедренном. В любом точно нет. В равностороннем таких высот несколько, а спрашивается про одну
4. а) всегда верно - так как треугольник равносторонний, то у него стороны являются и основаниями и боковыми сторонами одновременно, если выделять здесь равнобедренные треугольники, поэтому свойство медианы равнобедренного треугольника распространяется на все медианы, биссектрисы и высоты.
5. в) ответы а и б неверны. ответ а неверен, так как основание равнобедренного треугольника не всегда равно боковым сторонам. ответ б неверен, так как медианой, биссектрисой и высотой является только медиана, ПРОВЕДЁННАЯ К ОСНОВАНИЮ (опять же таки повторяю про это свойство)
6. в) в равностороннем. Рассмотрим треугольник ABC, который не является ни равносторонним, ни равнобедренным и проведём в нём высоту. Высота AH не поделила т. ABC на равные треугольники ABH и ACH. Рассмотрим другой треугольник DEF, который является равнобедренным. В нём боковые стороны DE и FE. Высота EH делит треугольник на 2 равных. Они равны по 1, 2 и 3 признакам равенства треугольников (здесь можно доказать 1 из них, без разницы), так как EH является также медианой и биссектрисой, а FE=DE. А теперь проведём высоту FG. Она не поделила треугольник DEF на равные, так как высота проведена к боковой стороне, а не к основанию. Следовательно, вариант в верный.
P.S. учите геометрию и учитесь внимательно читать какие бы то ни было геометрические свойства, признаки, определения, теоремы и т.д. и т.п. и всё получится(: