АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
ВК=2, АК=8, тогда, АВ=10.
Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов.
АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16.
В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6.
Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
Противоположные углы параллелограмма равны между собой, соседние углы параллелограмма в сумме равны 180°.
∠A=∠C; ∠B=∠D; ∠A+∠B=∠B+∠C=∠C+∠D=∠A+∠D=180°
1) Острый угол параллелограмма равен 46°
∠A = 46°; ∠B = ∠D = 180° - 46° = 134°
∠A = ∠C = 46°; ∠B = ∠D = 134°
2) Так как сумма двух углов 186° больше 180°, значит, это сумма двух тупых углов параллелограмма.
∠B + ∠D = 186°; ∠B = ∠D = 186° : 2 = 93°
∠A = ∠C = 180° - 93° = 87°
3) Тупой угол параллелограмма на 56° больше острого угла.
∠A = ∠C = 62°; ∠B = ∠D = 118°
4) Острый угол параллелограмма в 3 раза меньше тупого угла.
∠A = ∠C = 45°; ∠B = ∠D = 135°
5) Острый угол относится к тупому углу как 5:7
∠A = ∠C = 75°; ∠B = ∠D = 105°