По формуле Герона находим площадь основания. р = (16+63+65)/2 = 144/2 = 72 см. So = √(p(p-a)(p-b)(p-c)) = √(72*56*9*7) = √ 254016 = 504 см². Если все боковые рёбра имеют одинаковый угол наклона к основанию, то вершина пирамиды равно удалена от вершин основания. При этом проекции боковых рёбер на основание равны высоте H пирамиды и равны радиусу R описанной около треугольника основания окружности. R = abc/(4S) = 16*63*65/(4*504) = 65520/2016 = 32.5 см. Получаем объём пирамиды: V = (1/3)SoH = (1/3)504*32,5 = 5460 см³.
В треугольнике угол A=30° угол C=45° а высота BD= 4 см.
Найдите стороны треугольника.
----------------------
Высота ВД противолежит углу, равному 30º. ⇒ BD равна половине гипотенузы ∆ АВД.
Гипотенуза АВ=4*2=8 см.
АD найдем по т.Пифагора:
АD²=АВ²-ВD²
АD=√(64-16)=√48
АD=4√3 см
В прямоугольном ∆ ВDС острый угол ВСD=45º, ⇒ угол СВD=45º,
∆ СВD - равнобедренный, СD=ВD=4 см
По т.Пифагора ВС=4√2 см ( проверьте)
Тогда АС=АD+DС=4√3+4=4(√3+1)
Стороны равны
АВ=8,
ВС=4√2
AC =4(√3+1)
-----------
Если Вы уже изучали тригонометрические функции, то можно использовать их значение для заданных углов.
АВ=ВD:sin30º=4:0,5=8 см
BC=BD:sin45º=4:(√2)/2=4√2 см
АС=АD+DС=4√3+4=4(√3+1) см
р = (16+63+65)/2 = 144/2 = 72 см.
So = √(p(p-a)(p-b)(p-c)) = √(72*56*9*7) = √ 254016 = 504 см².
Если все боковые рёбра имеют одинаковый угол наклона к основанию, то вершина пирамиды равно удалена от вершин основания.
При этом проекции боковых рёбер на основание равны высоте H пирамиды и равны радиусу R описанной около треугольника основания окружности.
R = abc/(4S) = 16*63*65/(4*504) = 65520/2016 = 32.5 см.
Получаем объём пирамиды:
V = (1/3)SoH = (1/3)504*32,5 = 5460 см³.