1 признак : два прямоугольных треугольника равны, если два катета одного треугольника равны двум катетам другого треугольника. Коротко этот признак называют равенством по двум катетам.
2 признак:два прямоугольных треугольника равны, если катет и прилежащий острый угол одного треугольника равны катету и прилежащему острому углу другого треугольника.
3 признак:Два прямоугольных треугольника равны, если равны катет и противолежащий острый угол одного треугольника катету и противолежащему углу другого треугольника
4 признак: Если гипотенуза и острый угол одного прямоугольного треугольника равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны.
5 признак: Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого треугольника, то такие треугольники равны.
Все боковые грани правильной пирамиды образуют с плоскостью основания равные углы, а высота проходит через центр основания, который является центром вписанной и описанной около основания окружностей.
Двугранный угол здесь образован радиусом вписанной окружности и апофемой, как отрезками. перпендикулярными ребру основания в одной точке (по т. о трех перпендикулярах).
Радиус вписанной в квадрат окружности равен половине его стороны.
r=24:2=12 (см)
Соединив основание апофемы с центром основания ( основанием высоты пирамиды), получим прямоугольный треугольник.
При этом катеты- высота пирамиды и половина стороны основания - равны 12 см.
1 неверно
Объяснение:
1 признак : два прямоугольных треугольника равны, если два катета одного треугольника равны двум катетам другого треугольника. Коротко этот признак называют равенством по двум катетам.
2 признак:два прямоугольных треугольника равны, если катет и прилежащий острый угол одного треугольника равны катету и прилежащему острому углу другого треугольника.
3 признак:Два прямоугольных треугольника равны, если равны катет и противолежащий острый угол одного треугольника катету и противолежащему углу другого треугольника
4 признак: Если гипотенуза и острый угол одного прямоугольного треугольника равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны.
5 признак: Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого треугольника, то такие треугольники равны.
Высота правильной четырёхугольной пирамиды равна 12 см, а сторона основания равна 24 см. Вычисли двугранный угол при основании.
——————————————————
Основание правильной четырехугольной пирамиды – квадрат.
Все боковые грани правильной пирамиды образуют с плоскостью основания равные углы, а высота проходит через центр основания, который является центром вписанной и описанной около основания окружностей.
Двугранный угол здесь образован радиусом вписанной окружности и апофемой, как отрезками. перпендикулярными ребру основания в одной точке (по т. о трех перпендикулярах).
Радиус вписанной в квадрат окружности равен половине его стороны.
r=24:2=12 (см)
Соединив основание апофемы с центром основания ( основанием высоты пирамиды), получим прямоугольный треугольник.
При этом катеты- высота пирамиды и половина стороны основания - равны 12 см.
Следовательно, треугольник - равнобедренный. Острые углы равнобедренного прямоугольного треугольника равны 45º.⇒ Искомый угол равен 45º.