В списке Всеми́рного насле́дия ЮНЕ́СКО в Респу́блике Казахста́н значатся 5 наименований (на 2017 год), это составляет 0,4 % от общего числа (1121 на 2019 год). 3 объекта включены в список по культурным критериям, причём один из них признан шедевром человеческого гения (критерий i) и 2 объекта включены по природным критериям. Кроме этого, по состоянию на 2017 год, 13 объектов на территории Казахстана находятся в числе кандидатов на включение в список всемирного наследия[1]. Республика Казахстан ратифицировала Конвенцию об охране всемирного культурного и природного наследия 29 апреля 1994 года[2]. Первые объекты, находящиеся на территории Казахстана были занесены в список в 2003 году на 27-й сессии Комитета всемирного наследия ЮНЕСКО.
Якщо даний чотирикутник розділити діагоналлю (наприклад АС) на два трикутники, то якщо з"єднати попарно середини сторін (точки М і N, та К і Р) отримаємо середні лінії трикутників, які паралельні третій стороні, тобто діагоналі, а отже паралельні між собою (МN || KP). Якщо провести у чотирикутнику і іншу діагональ (ВД), то аналогічно отримаємо, що МК || NP. Отже отримали чотирикутник МNPK у якому сторони попарно паралельні, як відомо такий чотирикутник - це паралелограм, а у паралелограма протилежні кути - рівні, що й треба було довести.
В списке Всеми́рного насле́дия ЮНЕ́СКО в Респу́блике Казахста́н значатся 5 наименований (на 2017 год), это составляет 0,4 % от общего числа (1121 на 2019 год). 3 объекта включены в список по культурным критериям, причём один из них признан шедевром человеческого гения (критерий i) и 2 объекта включены по природным критериям. Кроме этого, по состоянию на 2017 год, 13 объектов на территории Казахстана находятся в числе кандидатов на включение в список всемирного наследия[1]. Республика Казахстан ратифицировала Конвенцию об охране всемирного культурного и природного наследия 29 апреля 1994 года[2]. Первые объекты, находящиеся на территории Казахстана были занесены в список в 2003 году на 27-й сессии Комитета всемирного наследия ЮНЕСКО.
Объяснение:
Якщо провести у чотирикутнику і іншу діагональ (ВД), то аналогічно отримаємо, що МК || NP.
Отже отримали чотирикутник МNPK у якому сторони попарно паралельні, як відомо такий чотирикутник - це паралелограм, а у паралелограма протилежні кути - рівні, що й треба було довести.