Две параллельные прямые пересекаются третьей прямой, поэтому выполняются следующие положения: углы 2 и 4 равны как вертикальные, сумма 4 и вертикального угла углу 1 равна 180° как внутренние односторонние, значит сумма углов 1 и 2 равна 180°, угол 1 составляет 5 частей, угол 2 - 4 части, всего 9 частей, тогда 1 часть 180°: 9 = 20°. угол 1 5·20° = 100°, угол 2 - 4·20° = 80°. угол 4 равен 80°(как вертикальный углу 2). угол 3 и угол 4 – смежные, их сумма равна 180°. угол 3 равен 180° - угол 4 = 180° -80° = 100°.
Рассмотрим прямоугольный △ABC:
Сумма острых углов прямоугольного треугольника равна 90°.
⇒ ∠А = 90° - 45° = 45°.
Т.к. ∠А = ∠В = 45°, то △ABC - равнобедренный.
Т.к. CD Ʇ AB ⇒ CD - высота, проведённая к основанию равнобедренного тр-ка.
Высота, проведённая к основанию равнобедренного треугольника, является и медианой, и высотой.
⇒ высота CD - медиана равнобедренного △ABC.
Медиана, проведённая из прямого угла прямоугольного треугольника к гипотенузе, равна половине гипотенузы.
⇒ медиана CD в 2 раза меньше AB, т.е. AB = 14 (см).
ответ: АВ = 14 (см).Задача #2.Рассмотрим прямоугольный △PKF:
∠1 + ∠KPC = 180˚, т.к. они смежные ⇒ ∠KPC = 180˚ - 150˚ = 30˚.
Катет, лежащий напротив угла в 30°, равен половине гипотенузы.
⇒ катет KE в 2 раза меньше РЕ, т.е. РЕ = 20 (см).
Сумма острых углов прямоугольного треугольника равна 90°.
⇒ ∠PKC = 90˚ - 30˚ = 60˚.
Т.к. ∠PKC = 60˚, а ∠PKE = 90˚ ⇒ ∠CKE = 90˚ - 60˚ = 30˚.
Катет, лежащий напротив угла в 30°, равен половине гипотенузы.
⇒ катет CE в 2 раза меньше KE, т.е. CE = 5 (см).
Т.к. PE = 20 (см), а СЕ = 5 (см), то СР = 20 - 5 = 15 (см).
ответ: CE = 5 (см); CP = 15 (см).Задача #3.Пусть отрезок, делящий △ABC на два других будет называться BD.
1. Рассмотрим прямоугольный △DBC:
Сумма острых углов прямоугольного треугольника равна 90°.
⇒ ∠DBC = 90˚ - 65˚ = 25˚.
2. Рассмотрим прямоугольный △ABC:
Т.к. на рисунке ∠ABD = ∠DBC, то BD - биссектриса ∠ABC ⇒ ∠ABC = 50˚.
Сумма острых углов прямоугольного треугольника равна 90°.
⇒ ∠CAB = 90˚ - 50˚ = 30˚.
ответ: ∠CAB = 30˚.