Дан прямоугольный треугольник МNР с прямым углом Р. Установите соответствия между отношениями сторон и тригонометрическими функциями острого угла: а); b) ; c) .
1) синус угла М;
2) косинус угла М;
3) синус угла N;
4) косинус угла N;
5) тангенс угла М;
6) тангенс угла N;
7) котангенс угла М;
8) котангенс угла N.
2. Два туриста одновременно вышли из лагеря. Первый шел на север со скоростью 5 км/ч, второй шел на запад со скоростью 4 км/ч. Каким будет расстояние между ними через 4 часа.
3. Для острого угла найдите , и , если .
4. Вертикальная башня высотой 40 м видна из точки К на поверхности земли под углом Найдите расстояния от точки К до основания башни и до самой высокой точки башни.
Все стороны квадрата равны. АВСD – квадрат по условию, тогда AD=AB=CD=5 см.
Углы квадрата прямые, то есть угол ADC=90°, следовательно ∆ADC – прямоугольный.
В прямоугольном треугольнике ASC по теореме Пифагора:
AC²=AD²+CD²
AC²=5²+5²
АС²=25+25
АС=√50 см
Если прямая перпендикулярна плоскости, значит она перпендикулярна всем прямым, лежащим на этой плоскости. Исходя из этого: так как SA перпендикулярна АВСD, то угол SAB=угол SAC=90°.
Так как угол SAB=90°, то ∆SAB – прямоугольный.
В прямоугольном треугольнике SAB по теореме Пифагора:
SB²=SA²+AB²
12²=SA²+5²
144=SA²+25
Так как угол SAC=90°, то ∆SAC – прямоугольный.
В прямоугольном треугольнике SAC по теореме Пифагора:
SC²=SA²+AC²
SC²=(√119)²+(√50)²
SC²=119+50
SC²=√169
SC=13 см.
ответ: 13 см.