Рассмотрим треугольник АВН. Это равнобедренный треугольник, так как АН=ВН. Значит в нем высота является и медианой. Разделим отрезок АВ пополам и отметим точку К. Соединим точки Н и К. Отрезок НК перпендикулярен прямой АВ.
Проведем из точки С прямую, параллельную прямой НК и отметим точку Р пересечения этой прямой со стороной АВ. СР - высота треугольника АВС из вершины С к прямой АВ.
Т.к. АВ биссектриса угла САD отсюда следует, что CAB равен BAD. По теореме УСУ, если две углов и одна сторона треугольника равны углам и стороне другого треугольника, то эти треугольники равны, отсюда следует что треугольники равны.
2) Доно:
треугольники RSO и POT
RO=OT; SO=OP
Доказать:
RSO=POT
Доказательство:
По теореме смежных углов, угол ROS равен углу POT. По теореме СУС, если две стороны и один угол треугольника равен другому то эти треугольники равны, отсюда следует что треугольники равны.
3) Доно:
треугольники EOF и MON
EO=ON и угол FEO=ONM
Доказать:
EOF=MON
Доказательство:
Т.к. угол FEO=ONM равны, то соответственно и стороны будут равны, отсюда следует что FO=MO. По теореме СУС, если две стороны и один угол треугольника равен другому то эти треугольники равны, отсюда следует что треугольники равны.
Пересечение 6 -2.
Объяснение:
В треугольнике АВС ВН - высота к стороне АС.
Рассмотрим треугольник АВН. Это равнобедренный треугольник, так как АН=ВН. Значит в нем высота является и медианой. Разделим отрезок АВ пополам и отметим точку К. Соединим точки Н и К. Отрезок НК перпендикулярен прямой АВ.
Проведем из точки С прямую, параллельную прямой НК и отметим точку Р пересечения этой прямой со стороной АВ. СР - высота треугольника АВС из вершины С к прямой АВ.
Пересечение высот - точка О, лежит на пересечении
столбца 6 и строки 2.
1) Доно:
треугольники АВС и АВD
AB биссектриса углов САD и CBD
BC=CD
Доказать:
АВС=СВD
Доказательство:
Т.к. АВ биссектриса угла САD отсюда следует, что CAB равен BAD. По теореме УСУ, если две углов и одна сторона треугольника равны углам и стороне другого треугольника, то эти треугольники равны, отсюда следует что треугольники равны.
2) Доно:
треугольники RSO и POT
RO=OT; SO=OP
Доказать:
RSO=POT
Доказательство:
По теореме смежных углов, угол ROS равен углу POT. По теореме СУС, если две стороны и один угол треугольника равен другому то эти треугольники равны, отсюда следует что треугольники равны.
3) Доно:
треугольники EOF и MON
EO=ON и угол FEO=ONM
Доказать:
EOF=MON
Доказательство:
Т.к. угол FEO=ONM равны, то соответственно и стороны будут равны, отсюда следует что FO=MO. По теореме СУС, если две стороны и один угол треугольника равен другому то эти треугольники равны, отсюда следует что треугольники равны.