Т.к. в треугольнике сумма углов равна 180, то угол В=30 градусов.Высота делит АВС на 2 треугольника. Рассмотрим треугольник СDВ, где угол D=90, а угол В=30 градусам. СВ-гипотенуза, CD-катет, противолежащий углу в 30 градусов. Катет, противолежащий углу в 30 градусов равен половине длины гипотенузы, значит гипотенуза в 2 раза больше СD.
ВD=6 корень из 3 умножить на 2, получаем 12 корень из 3.
или
катет равен произведению гипотенузы на синус противолежащего угла,значит гипотенуза ВD равна катет СD делить на синус 30. Синус 30=1/2
При пересечении двух прямых образуется по два смежных угла и по два вертикальных угла. Сумма двух смежных углов равна 180 градусов. Вертикальные углы равны между собой. С условия задачи известна градусная мера двух углов, которые образовались при пересечении двух прямых, то есть — это сумма двух вертикальных углов. ответим на вопрос задачи.
1). Найдем углы, образованные при пересечении двух прямых.
(360 - 104) / 2 = 256 / 2 = 128 градусов.
ответ: При пересечении двух прямых, образовалось 4 угла, градусная мера которых равна 52, 52, 128, 128 градусов
ВD=6 корень из 3 умножить на 2, получаем 12 корень из 3.
или
катет равен произведению гипотенузы на синус противолежащего угла,значит гипотенуза ВD равна катет СD делить на синус 30. Синус 30=1/2
Значит ВС равен 12 корень из 3
При пересечении двух прямых образуется по два смежных угла и по два вертикальных угла. Сумма двух смежных углов равна 180 градусов. Вертикальные углы равны между собой. С условия задачи известна градусная мера двух углов, которые образовались при пересечении двух прямых, то есть — это сумма двух вертикальных углов. ответим на вопрос задачи.
1). Найдем углы, образованные при пересечении двух прямых.
(360 - 104) / 2 = 256 / 2 = 128 градусов.
ответ: При пересечении двух прямых, образовалось 4 угла, градусная мера которых равна 52, 52, 128, 128 градусов