проведём диагональ ас, ттогда треугольники асд и авс равнобедренные т к по условию их боковые стороны равны.т.к угол д=39 градусам то угол сад+асд=180-39=141 градус, тогда угол асд=сад=141: 2=70,5 градусам.
рассмотрим треуг. авс:
т.к угол в равен 3 гр,то вас+вса=180-3=177 градусов,по теореме о сумме углов треуг.
т к треуг равнобедренный, то его углы при основании равны,тогда угол вас=вса=177: 2=88,5 градусов
тогда угол а равен сумме углов вас и сад т.е 88.5 градусов+70.5 градусов=159 градусов
Рассмотрим параллелограмм АВСД (см. рисунок) стороны которого: АВ=32 см, ВС=40 см. Из угла АВС проведем перпендикуляр ВЕ и расстояние между вершинам тупых углов ВД Рассмотрим треугольник АВЕ: Угол АЕВ=90 градусов, Гипотенуза АВ=32 см, Катет АЕ=16 см (по условию задачи) По теореме Пифагора найдем второй катет (высоту): ВЕ= √(АВ^2-АЕ^2)= √(32^2-16^2)= √(1024-256)= √768 см. Теперь рассмотрим треугольник BДE: ДЕ=АД-АЕ=40-16=24 см. ВЕ=√768 см. Угол ВЕД=90 градусов По теореме Пифагора найдем ВД: ВД=√(ВЕ^2+ВД^2)= √((√768)^2+24^2))= √(768+576)= √1344=8√21 см или приблизительно 36,66 см. ответ: расстояние между вершинами тупых углов равно 8√21 см
проведём диагональ ас, ттогда треугольники асд и авс равнобедренные т к по условию их боковые стороны равны.т.к угол д=39 градусам то угол сад+асд=180-39=141 градус, тогда угол асд=сад=141: 2=70,5 градусам.
рассмотрим треуг. авс:
т.к угол в равен 3 гр,то вас+вса=180-3=177 градусов,по теореме о сумме углов треуг.
т к треуг равнобедренный, то его углы при основании равны,тогда угол вас=вса=177: 2=88,5 градусов
тогда угол а равен сумме углов вас и сад т.е 88.5 градусов+70.5 градусов=159 градусов
ответ: угол а=159 градусов
Рассмотрим треугольник АВЕ:
Угол АЕВ=90 градусов, Гипотенуза АВ=32 см, Катет АЕ=16 см (по условию задачи)
По теореме Пифагора найдем второй катет (высоту):
ВЕ= √(АВ^2-АЕ^2)= √(32^2-16^2)= √(1024-256)= √768 см.
Теперь рассмотрим треугольник BДE:
ДЕ=АД-АЕ=40-16=24 см. ВЕ=√768 см. Угол ВЕД=90 градусов
По теореме Пифагора найдем ВД:
ВД=√(ВЕ^2+ВД^2)= √((√768)^2+24^2))= √(768+576)= √1344=8√21 см или приблизительно 36,66 см.
ответ: расстояние между вершинами тупых углов равно 8√21 см