Уравнение бісектрисі першої координатної чверті у = х. На этой прямой могут быть 2 точки, равноудалённые от точки (5;3) - обозначим её О. Для нахождения координат таких точек решим систему уравнений прямой у = х и окружности с центром в точке (5;3) радиусом √10. у = х (х-5)²+(у-3)² = 10 заменим у на х (х-5)²+(х-3)² = 10 х²-10х+25+х²-6х+9 = 10 приводим подобные: 2х²-16х+24 = 0 сократим на 2: х²-8х+12 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=(-8)^2-4*1*12=64-4*12=64-48=16;Дискриминант больше 0, уравнение имеет 2 корня: x₁=(√16-(-8))/(2*1)=(4-(-8))/2=(4+8)/2=12/2=6;x₂=(-√16-(-8))/(2*1)=(-4-(-8))/2=(-4+8)/2=4/2=2.
Получили 2 точки на оси Ох, такие же координаты и на оси Оу, поэтому задача имеет 2 решения:
Высота равнобедренного треугольника, проведенного к основанию 6, делит основание пополам. ( cм. рисунок в приложении) Высота разбивает равнобедренный треугольник на два прямоугольных с гипотенузой 5 см и катетом 3 см. Второй катет 4 см ( по теореме Пифагора, это египетский треугольник) S=6·4/2=12 кв. ед Вершина пирамиды проектируется в центр описанной окружности (см. рисунок, три прямоугольных треугольника равны по катету ( высота пирамиды - общая и острому углу) r=S/p=12/(5+5+6)/2=24/16=3/2=1,5 H=r·tg60°=1,5·√3=3√3/2
На этой прямой могут быть 2 точки, равноудалённые от точки (5;3) - обозначим её О.
Для нахождения координат таких точек решим систему уравнений прямой у = х и окружности с центром в точке (5;3) радиусом √10.
у = х
(х-5)²+(у-3)² = 10 заменим у на х
(х-5)²+(х-3)² = 10
х²-10х+25+х²-6х+9 = 10 приводим подобные:
2х²-16х+24 = 0 сократим на 2:
х²-8х+12 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-8)^2-4*1*12=64-4*12=64-48=16;Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√16-(-8))/(2*1)=(4-(-8))/2=(4+8)/2=12/2=6;x₂=(-√16-(-8))/(2*1)=(-4-(-8))/2=(-4+8)/2=4/2=2.
Получили 2 точки на оси Ох, такие же координаты и на оси Оу, поэтому задача имеет 2 решения:
(х-6)²+(у-6)² = 10,
(х-2)²+(у-2)² = 10.
Высота разбивает равнобедренный треугольник на два прямоугольных с гипотенузой 5 см и катетом 3 см. Второй катет 4 см ( по теореме Пифагора, это египетский треугольник)
S=6·4/2=12 кв. ед
Вершина пирамиды проектируется в центр описанной окружности
(см. рисунок, три прямоугольных треугольника равны по катету ( высота пирамиды - общая и острому углу)
r=S/p=12/(5+5+6)/2=24/16=3/2=1,5
H=r·tg60°=1,5·√3=3√3/2