Speaking Task 1. Choose the question from the card on the topic Entertainment and fedia^ prime prime and be ready to answer it after the teacher starts the conversation. Produce a speech by giving extended answers to the questions. Share your ideas with the class. Teacher organizes a Socratic seminar, which helps him/her to assess learners while they are speaking on the toplic Entertainment and Media and he/she prepares and cuts down questions and expressions beforehand. Learners sit in a circle and answer the question using in their speech some formal and Informal expressions to present logically connected information to their classmates. Expressions: Stating an opinion The way I see it... Sorry to interrupt, but... Is it okay if I jump in for a second? Can I add something here? Can I throw my two cents in? Not necessarily Interrupting If I might add something..... I beg to differ No, I'm not so sure about that That's for sure Expressing disagreement I'd say the exact opposite I have to side with somebody (name)on this one I was just going to say that In my opinion Expressing agreement If you ask me.. That's exactly how I feel As far as I'm concerned. If you want my honest opinion..... You have a point there That's not always the case
1))). Если луч есть биссектриса угла, то любая точка его равноудалена от сторон этого угла.
2))). Прямую, проходящую через середину отрезка перпендикулярно к нему, называют серединным перпендикуляром к отрезку.
Свойства серединных перпендикуляров треугольника
Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка.
Точка пересечения серединных перпендикуляров, проведенных к сторонам треугольника, является центром окружности, описанной около этого треугольника.
3))). 1. Точка пересечения биссектрис треугольника- центр вписанной окружности ;
2. Точка пересечения серединных перпендикуляров треугольника- центр описанной окружности ;
3. Точка пересечения медиан треугольника (медианы треугольника пересекаются в отношении 2:1)
4. Точка пересечения высот треугольника - ортоцентр фигуры (центр вписанной и описанной окружности).
Объяснение: