Условие задачи дано с ошибкой: если в основании прямоугольного параллелепипеда квадрат, то диагональ основания составляет с боковой гранью угол 45°, а не 30°. Кроме того, по этим данным невозможно найти высоту прямоугольного параллелепипеда.
Задача встречается в таком виде: Основанием прямоугольного параллелепипеда служит квадрат. Диагональ параллелепипеда равна 12, она составляет угол 30° с плоскостью боковой грани. Найдите объём прямоугольного параллелепипеда.
DB₁ - диагональ прямоугольного параллелепипеда. Угол между прямой и плоскостью - угол между прямой и ее проекцией на эту плоскость. В₁С₁⊥(DD₁C₁), значит DC₁ - проекция диагонали DB₁ на плоскость (DD₁C₁), а ∠B₁DC₁ = 30°.
Биссектриса внутреннего угла треугольника делит противоположную сторону в отношении прилежащих сторон, образующих этот угол. Найдем длины сторон АС и ВС как модули векторов, по координатам их конца и начала.
|AC| = √((Xc-Xa)²+(Yc-Ya)²) или |AC| =√(3²+0) =3 ед.
|BC| = √((Xc-Xb)²+(Yc-Yb)²) или |BC| =√((-6)²+(-8)²) =10 ед.
Отношение сторон: k = AC/BC = 3/10 =0,3.
Координаты точки, делящей отрезок АВ, заданный координатами его начала и конца, в данном отношении k, считая от точки А (при отношении k=0,3, считая от точки А) найдем по формулам:
Задача встречается в таком виде:
Основанием прямоугольного параллелепипеда служит квадрат. Диагональ параллелепипеда равна 12, она составляет угол 30° с плоскостью боковой грани. Найдите объём прямоугольного параллелепипеда.
DB₁ - диагональ прямоугольного параллелепипеда.
Угол между прямой и плоскостью - угол между прямой и ее проекцией на эту плоскость.
В₁С₁⊥(DD₁C₁), значит DC₁ - проекция диагонали DB₁ на плоскость (DD₁C₁), а ∠B₁DC₁ = 30°.
ΔB₁C₁D: ∠C₁ = 90°,
B₁C₁ = DB₁ · sin30° = 12 · 1/2 = 6 - ребро основания
DC₁ = DB₁ · cos 30° = 12 · √3/2 = 6√3
ΔDCC₁: ∠C = 90°, по теореме Пифагора
СС₁ = √(DС₁² - DC²) = √(108 - 36) = √72 = 6√2 - высота параллелепипеда
V = Sосн·H = 6² · 6√2 = 216√2
Биссектриса внутреннего угла треугольника делит противоположную сторону в отношении прилежащих сторон, образующих этот угол. Найдем длины сторон АС и ВС как модули векторов, по координатам их конца и начала.
|AC| = √((Xc-Xa)²+(Yc-Ya)²) или |AC| =√(3²+0) =3 ед.
|BC| = √((Xc-Xb)²+(Yc-Yb)²) или |BC| =√((-6)²+(-8)²) =10 ед.
Отношение сторон: k = AC/BC = 3/10 =0,3.
Координаты точки, делящей отрезок АВ, заданный координатами его начала и конца, в данном отношении k, считая от точки А (при отношении k=0,3, считая от точки А) найдем по формулам:
Xd = (Xa+k*Xb)/(1+k) и Yd = (Ya+k*Yb)/(1+k).
В нашем случае: Xd = (-1+0,3*8)/1,3) ≈ 1,08. Yd = (2+1,8)/1,3≈2,92.
ответ: D(1,08;2;92).
P.S. Рисунок для наглядности.